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PULSED DIFFERENTIAL HOLOGRAPHIC MEASUREMENTS
OF VIBRATION MODES OF HIGH-TEMPERATURE PANELS

D. A. Evensen
R. Aprahamian
K. R. Overoye

TRW Systems Group

SUMMARY

Holography is a lensless imaging technique which can be applied
to measure static or dynamic displacements of structures. Conventional
holography cannot be readily applied to measure vibration modes of high-
temperature structures, due to difficulties caused by thermal convection
currents. The present report discusses the use of "pulsed differential
holography,'" which is a technique for recording structural motions in
the presence of random fluctuations such as turbulence. An analysis
of the differential method is presented, and demonstration experiments
were conducted using heated stainless steel plates. Vibration modes
were successfully recorded for the heated plates at temperatures of
1000, 1600, and 2000°F. The technique appears promising for such future
measurements as vibrations of the Space Shuttle TPS panels or recording
flutter of aeroelastic models in a wind-tunnel.
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1.0 INTRODUCTION

Holography is a lensless imaging process which allows the reconstruction

of three-dimensional images of diffuse objects (Refs. 1 and 2). Discussions
of the physical principles and some applications of holography are
available in recent textbooks (e.g., Refs. 3, 4, and 5). A related
technique, known as holographic interferometry (Ref. 6) allows the
experimenter to measure static or dynamic displacements of interest in
many structural mechanics problems (Refs. 7, 8, 9, 10).

In partieular, "double-exposure" holographic interferopetry provides
a measure of the relative structural displacement (say u, - ul) between

two exposures of the hologram. For high-speed dynamic events, such as
elastic wave propagation, double—-exposure holography requires the use of
pulsed lasers (see Refs. 11, 12, and 13). A related technique, called
"differential" holographic interferometry has been applied to static
problems (Ref. 14) and large-amplitude vibrations (Ref. 15).

For small amplitude vibrations (on the order of a few wavelengths
of light) '"time-average holography'" (Ref. 16) has proven very successful
for recording vibration modes. Vibration modes of beams, plates, shells,
turbine blades, and many other practical structures have been recorded
using time-average holography (see Refs. 10 and 17, for example).
Conventional time-average holography uses continuous-wave lasers and
involves relatively long exposure times. During the exposure of the
photographic plate (hologram), the optical system must be relatively
free of random motions (i.e., optical path length changes) or the
hologram will not be properly recorded (see Ref. 18). This problem of
maintaining adequate stability during the exposure is a major drawback
of conventional time-—average holography.

Since holography had proven very useful in recording structural
vibrations of plates at room temperature (see Ref. 17), the question
arose as to whether or not similar techniques would work for tests on
high-temperature Space Shuttle panels at 1500° - 2500°F. The major
problem (for holography) which temperature effects introduce, involves
thermal convection currents. These convection currents cause changes
in the index of refraction of the air around the vibrating panel and
thereby cause random fluctuations in the optical path length. Thus,
the problem becomes one of recording the structural motion in the presence
of "noise" (i.e., random fluctuations in the optical path).

This problem has been solved using a vacuum chamber (which eliminates
the convection currents) and continuous-wave, time-average holography
(see Ref. 10). However, the vacuum chamber introduces several mechanical
complications and does not appear practical for the Space Shuttle TPS
panels of interest to NASA. A more promising approach, which was
demonstrated during the present study, involves '"pulsed differential



holography'" (see Refs. 11 and 15). -With this technique, a pulsed laser

is used to expose the hologram at two closely-spaced times, 1 and t,

' separated by a small time—delay, At. Between these two exposure times,
the vibrating plate undergoes a displacement, but the (slowly-varying)
thermal convection noise does not change appreciably. The resulting
"differential hologram" records primarily the relative structural dis-
placement'(ﬁz_4 ﬁi) between exposures, and provides good definition of
the vibration modes of the plate. This holographic method has been used
herein to record very clean vibration modes of plates at temperatures
of 1000, 1600, and 2000°F, in the presence of thermal convection currents.

The pulsed differential technique appears applicable to many other
problems where the rate of change of the structural deformation (say u)
is sufficiently larger than the rate of change of the "noise" terms.

For example, a differential approach might prove workable for recording
structural motions (e.g., flutter) in a wind tunnel, despite the
presence of turbulence in the aerodynamic boundary layers.

The work reported herein is divided into five main parts, as
follows:

o Holography and Holographic Interferometry

o Pulsed Differential Holography Applied to Vibrating Objects
o Tests at 1000°F

o Tests at 2000°F

© Concluding Remarks

The section on holography is intended to provide background and
explain the fundamentals of the technique to engineers not already
familiar with holography. Pulsed differential holography is then
discussed and applied to harmonically vibrating objects, such as a high-
temperature plate. Analytical results are presented for the important
case of "small" time-delay, and the question of optimum timing the
laser pulses (with respect to the plate vibration) is discussed. Results
are presented which outline the sensitivity, capabilities, and limitations
of the differential technique. A probability analysis is presented for
the case of "random timing of the first pulse'; random timing was
actually used in some of the high-temperature experiments.

Details of the vibration tests and problems involved are presented
in the next two sections. The tests at 1000°F were conducted using an
8" x 10" stainless steel plate and optimum sychronization of the laser
with the plate vibration. Interferograms showing mode shapes are
presented for several modes and frequencies, at temperatures of



approximately 250, 515, 700, and 1040°F.. Similar results are presented
in the next section for tests at 1600°F and 2025°F.

The final section on Concluding Remarks summarizes the main results
obtained from this study.

_ Regarding future experiments involving differential holography, it
appears that this technique may be applicable to holographic measurements'
of flutter in a wind tunnel. The major problems of making such measuréments
in a wind tunnel environment involve high vibration levels and the
problem of turbulence in the aerodynamic boundary layer(s).” By using
pulsed differential holography, the structural deformation ' (between
exposures) would be recorded, and (hopefully) thé wind tunnel turbulence
would not change appreciably and distort the interferogram. Preliminary
calculations involving various boundary layer thicknesses and wind tunnel
Mach numbers appear encouraging. The measurement of panel flutter by
pulsed differential techniques has been suggested, and the approach
might work equally well for larger structures, such as wings and small-
scale aercelastic models of aircraft.

A related problem (which may be amenable to a similar solution)
involves the response of skin panels to the turbulent pressure fluctuations
in the boundary layer on large flight vehicles. Tests are frequently
conducted in large wind tunnels to simulate the response of the vehicle
panels. The response can be viewed as the superposition of many structural
modes responding simultaneously. Conventional instrumentation for such
tests involves fixed transducers which give the (local) panel displacement
as a function of time. By employing pulsed differential holography in
such tests, one can record the structural velocity, w, at time tl. The

differential hologram gives a measure of the instantaneous surface

velocity g% (over the surface of the panel, x,y) at a particular time,

t Such spatial measurements may be correlated with the point transducers

1
used conventionally and provide complementary information not currently
available.



2.0 HOLOGRAPHY AND HOLOGRAPHIC INTERFEROMETRY

Introduction and Background

The term "hologrephy" is used to describe a means of recording the
amplitudes and phases of waves, such as light waves or sound waves.
Holography originated with Gabor (Ref. 1) who pointed out the possibility
of recording (on a piece of photographic film) the amplitudes and phases
of coherent, monochromatic light waves transmitted through a transparent
object. By then projecting light through the photographic film (which
is called a "hologram") it is possible to reproduce a three-dimensional
image of the original object.

The reproduction of images as Gabor suggested became practical with
the advent of the laser as a source of monochromatic, coherent light. In
1964, Leith and Upatnieks (Ref. 2) demonstrated that a three~dimensional
image of an opaque object could be reconstructed in a manner similar to
that proposed by Gabor. Figure 1 shows a typical set-up of the apparatus
used in the Leith and Upatnieks holographic method.

Laser

/ Pinhole

Laser Pinhole

Mirror /

/

Mirror

Object

Virtual
Image of
the object

-
“Hologram
Hologram

Observer

Figure 1 - Left: Image Recording Process

Right: Image Retrieval



In making the hologram, the light waves from the object (object beam)
interact with the light from the mirror (reference beam). When the light
from the mirror is in phase with the light from the object, the waves add;
conversely, the waves cancel one another when they are out of phase. This
type of interaction results in variations in the intensity of the light
striking the photographic film (these are spatial variations in intensity,
in the plane of the hologram). Since photographic film reacts to the
intensity of light impinging on it, the exposed film gives a permanent
record of the interaction of the two light beams.

To reconstruct the image of the object from the hologram, the de-
veloped photographic film is illuminated with any monochromatic light
source, e.g., the original laser. Now the light interacts with the
hologram, and the result is a three-dimensional image of the original
object. The reconstruction of images in this fashion can be described
mathematically, and derivations are available in many textbooks (Ref. 3,
4, 5).

Double-Exposure Holographic Interferometry

Although image recomstruction was one of the first applications of
holography, a technique that has shown more potential from a research
standpoint is "double—exposure holography,'" which is one form of holo-
graphic interferometry (Ref. 6). The essential ideas are as follows:
first make a hologram of the object you wish to examine; then subject
the object to loads which cause it to deform, and expose the same holo-
gram for a second time. Now when this "double-exposed hologram'" is
developed and then illuminated, two images are produced: one is from the
undeformed body, the other from the deformed body. These light waves
(which form the two images) interact with one another, thereby creating
interference fringe patterns. (See Figure 2, for example.) By analyzing
the fringe patterns, one can determine the surface deformations of
the body, which were caused by the applied load.

Several papers have been written showing how the interference
fringe patterns can be related to the deformation of the object: see,
for example, Ref. 7, 8. 9, and 10.

As just presented, ''double-exposure holographic interferometry"
can be used to record the relative deformation of a structure as it
passes from one state ('"undeformed", say) to another (the "deformed"
state). It should be evident that the two states of deformation corre-
spond to the first exposure and the second exposure of the hologram,
respectively.

Initial work with double-exposure holograms involved measurement
of deflections from an unstressed state (the initial displacement, uy

N
was zero) to a nearby stressed state of static equilibrium (u2 £ 0).



Thus, the relative deformation measured between exposures was
&> > >
Uy - Uy —”1.12..'- 0 = u (2—1)

where the displacement vector a was a function of position (§) on.
the object, but did not vary with time, t. (See for example, Ref. 9 and
10.)

This work was soon extended to dynamic problems, however, in
which the first exposure recorded the unstressed state (ul = 0) and the

-
second exposure recorded the deformed state, u2(x, ti) where ti denotes

the particular instant in time when the second exposure was made. Typical
examples of this type involve elastic wave propagation in structures; see
References 11, 12, 13, and Figure 2. The significant difference between
the static and dynamic events (from a holographic standpoint) is that
static displacements can be recorded with continuous—wave lasers, but
high-speed dynamic events require the use of pulsed lasers. (The main
advantages and disadvantages of cw and pulsed laser holography are
presented in a subsequent section.)

Another extension of double-exposure holographv involves two
-> ->
states of deformation, with corresponding displacements Uy and Uy

S5
For example, the displacement u in static problems depends ypon the
applied load, P. When the load has a value Pl’ displacement uy results,

and the first exposure of the hologram is made. The load is then chinged
to a value PZ’ (the corresponding displacement state is denoted by u2)

and a second exposure is made. The interference fringes which form
(when the hologram is reconstructed) are related to the relative
displacement (32 - ﬁi) between exposures.

This type of (static) double-exposure holography was demonstrated
in Ref. 14 for static loading and buckling of cylindrical shells. Similar
results have been obtained for time-dependent displacements: see Ref.

11 and 15, for example. Imagine that we wish to study deformations
U(x, t) that depend upon position (¥X) and time, t. With a pulsed ruby

laser, we can expose the hologram twice, at times t1 and t2. Then

the interference fringes give a measure of relative displacement,

3 =, £) - u(x, £)) (2-2)



(a) A = 80 usec {b) A = 100 usec

(c) A = 130 usec (d) A = 150 usec

Figure 2 - Double-Exposure Holograms Showing Transverse Wave
Propagation in a Plate (From Ref. 12)



Now suppose that time t, is very near t

2 that is,

l;

t, = t; + At (2-3)

where At (for problems of interest herein) is on the order of 50
microseconds. Assuming the displacement field U(X, t) is a continuous
function of time, we can expand u(H, t2) in a Taylor series about

t=t;. Equation (2-2) then becomes
> > 2>
§=uE, t) +22 far v 2280 4,
1 t 2 Btz
t1 1
- UG, t)) (2-4)
which simplifies to
> -
5 =22 G, £ At + 0ae)? (2-5)

->
Equation (2-5) simply states that the displacement (§) which is recorded
holographicilly, is well-approximated by the product of the surface

- I} a 3 L3
veiocity 5%— and the time interval, At.

Since this type of double-exposure holography involves small
differences,

- -
u

2~ "M
and
At=t2-tl
it has been termed 'differential holographic interferometry'. A

separate section of this report is devoted to vibration analysis using
this differential technique; but first some understanding of continuous-
wave and pulsed laser holography is required, as outlined in the following
paragraphs.
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Continuous~Wave vs. Pulsed-Laser Holography

Continuous-wave lasers operate continuously, as their name implies.
Typically the power output of cw lasers (used for holography) is on
the order of 15 to 50 milliwatts. These power levels are such that relatively
"long" exposure times are required to make holograms with cw lasers.
For example, typical exposure times for cw holography range from 5 seconds
to several minutes. (The exposure time required is a function of the
sensitivity of the photographic emulsion and the intensity of the light
reaching the hologram.)

For ordinary, single-—exposure holography, it is common practice
to require that the resultant of all changes in optical path length
(due to noise, seismic disturbances, etc.) be less than 1/10th of a
wavelength during the exposure time. For long exposure times, (such as
those used in continuocus-wave holography) this criterion of XA/10 places
stringent mechanical stability requirements on the entire optical arrangement
as well as on the object being recorded. These stability requirements
are commonly satisfied by (i) using large, massive seismic tables that
are vibration-isolated, (ii) turning off the air-—conditioning (to reduce
spurious air currents in the room), and (iii) using various other techniques
to reduce noise, unwanted vibration, etc. These severe, long-term
stability requirements, which apply to continuous-wave holography, have
restricted its use and by-and-large limited it to the laboratory environment.
On the other hand, pulsed laser holography usually involves exposure times
which are very short: 50 nanoseconds is typical for a pulsed ruby laser.
Such pulsed lasers emit very high-intensity light, which is sufficient to
form a hologram on the photographic plate, despite the short exposure time.
The basic stability requirement - i.e., that all path length changes must
be less than /10, during the exposure - still is valid. However, since

the exposure time is so short (50 x lO_9 sec), and most random mechanical
disturbances are sufficiently "low-frequency', it becomes possible to
make pulsed laser holograms on ordinary wooden tables, in noisy machine-
shop environments, etc. (A discussion of the limits on the noise, what
amplitude and frequency can be tolerated, etc. is given in Section 3.0.)

Now consider our problem of measuring the vibration modes of a
high-temperature plate, using holographic interferometry (see Figure 3).
The main problem to be overcome in such an experiment involves the
thermal convection currents. Thermal convection causes changes in the index
of refraction and results in random fluctuations in the optical path length,
If the plate were at room temperature, it would be possible to record the
vibration modes using "'time-average' holography with a continuous-wave laser
(see Ref. 16 and 17, for example). (An example of a time-average hologram
of a vibrating plate is shown in Figure 4.)

1n "time-average' holography, the intensity of the reconstructed
image (from the developed hologram) is related to the square of time
integral 2

I ~E
r
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Figure 3: Holographic Arrangement for Recording Vibration Modes of
High-Temperature Plates.
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where T

E '\:/ ei¢(t) dt

[o]

T is the exposure time, and ¢(t) 1is the time-varying phase. If the
plate is vibrating sinusoidally with frequency { and amplitude m,
then (for normal illumination and viewing)

p(t) = %g (m sin Q t)

T

i'%? m sin @ t 2
E n e dt"JJo(Tm>

[o]

: s 2m , ,
(providing T > ?{'). The intensity of the recomstructed image, Ir, is

proportional to the zero-order Bessel function, squared:

I ~J 2 (21 %)
r o) A

Thus, the zerces of the Bessel function correspond to locations
where the intensity Ir is zero, which are the black interference fringes

(see Figure 4).

Now imagine that we try to use time-average holography when the
plate is heated. In this case, the phase ¢(t), contains a "noise"
term, N(t):

0(0) =21 [m sin 0t + N(©)]

where the '"noise" is caused by optical path length changes through the
thermal convection currents. The optical path length is the product of

the physical path length times the index of refraction, n, of the medium
(e.g., the surrounding air). The index of refraction in gases depends
primarily upon the demnsity, p, and the density varies with the temperature.
Thus, fluctuations in the thermal convection currents near the plate
eventually lead to the time-dependent noise term, N(t).

12



In this case, the time-integration gives

/ 12 psingt 12T N(E)
P\ )
E ~ e e dt

Clearly, if we limit the noise amplitude, such that

ZﬂINl << 1

A
or
A
In] << 2
12—)\”N(t)
then the term e is approximately unity and we regain

(approximately) the standard, room—-temperature result,

which was presented previously.

Similarly, it appears that when N(t) is sufficiently large (and
, 2T
15~ N(t)
also sufficiently random) the factor e can take any value
(on the unit circle in the complex plane) in a random fashion and cause
the time integral for E to vanish. (For a further discussion of this
point, see Refs. 18 and 19 .) The important noise factor N(t) from
the convection currents is a function of the temperature (call it ©),
and the time, t. From texts on fluid mechanics (e.g., Ref. 20) it is
expected that the free convection boundary layer (on a heated, vertical
plate) will be laminar (i.e., steady) at low temperatures and eventually
become turbulent (random) as the temperature increases. When the flow
is steady (i.e., not time-dependent) then the noise N(t) is zero and
continuous-wave holography remains feasible. As the temperature increases,
the turbulent eddies in the flow increase the random path length changes
and eventually prevent the formation of continuous-wave holograms.

13



This qualitative description is in agreement with- experiments
involving cw holography of heated objects. For example, Reference 21
showed that good-quality continuous-wave holograms of vibrating turbine
blades can be made in air at temperatures up to 300°C (572°F). Higher
temperatures can be achieved by using a helium atmosphere (e.g., Ref. 22)
which has a smaller change in index of refraction with temperature.
Experiments have shown that good quality cw holograms can be made at
temperatures from 800 — 1000°F in a helium atmosphere. Above these
temperatures, the desired interference fringes (due to either static or
vibratory displacements) eventually become weak (low-contrast) and
gradually disappear.

Another approach, which was also demonstrated at TRW (Ref. 10),
is to remove the thermal convection currents by using a vacuum enclosure.
Double-exposure, cw holograms of a heated turbine blade (1400°F) are
reported in Ref. 10. A similar approach was originally intended for use
in the present study of heated, vibrating plates. However, this method
involves significant heat loads on the vacuum chamber, which can cause
problems with the windows, thermal creep, etc. The criteria of mechanical
stability (random displacements less than A/10) during exposure still
applies, but it is complicated by the vacuum chamber and the heat input.
In addition, since the intent of this study was to develop practical,
workable means of measuring plate vibration modes at high temperatures,
it became apparent that we should concentrate our efforts on '"pulsed
differential holography" (and thus avoid many mechanical complicationms,
such as the vacuum chamber).

The use of "differential holography' as a means of eliminating
the noise from convection currents is discussed in the following paragraphs.

Pulsed Differential Holographic Interferometry

The basic ideas involved in ''differential holographic interferometry"
have already been introduced in the discussion of double-exposure holography
(see Equation 2-2). The present section will discuss the application of
pulsed differential holography to eliminate the effects of the thermal
convection currents.

When the plate is vibrating sinusoidally and significant thermal
convection is present, the (time-varying) change in optical path length
(e.g., from the laser, to the vibrating plate, and then to the hologram)
is given by

o(t) = %f' [m sin Q@ t + N(t)] (2-6)

where the amplitude, m, is a function of the co-ordinates (x, y) in the
plane of the vibrating plate and the thermal convection noise, N(t), varies
with space (x, y) as well as the time, t.
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_ Now we use the pulsed laser to expose the hologran!“ at times tl and
tz{ The resulting interferogram records the difference in phase, ¢(t2) —'
¢(t ). And, as before, if t2 =t

1t At, we have (by a TayloravSeries

expansion)

¢(t ) - ¢(t ) = ¢(c ) +.i Mt L. g (e

= ¢ At + O(Ae)z ' ' ' 2-7)

where ¢ is the time rate of change of the phase, evaluated at t = tl.

Substituting Equation (2-6) into (2-7) we have

#(t,) = o(e)= &8 [m 7 cos(ar,) 4 ﬁ(tl)] (at) (2-8)
In order to record the mode shape of the vibrating panel, we require that

m cos § £, >> ﬁ(tl) (2-9)

which says that our signal (in this case, the velocity of the plate, at
time t ) be much greater than the "noise" (which in this case is N,

evaluated at time tl). An alternate criterion to limit N(t) might be

N At << -)25 (2-10)

which means that between the exposures at t1 and t2 the change in optical

path length (due to the noise alone) will not be sufficient to cause a fringe
on the interferogram. (The first interference fringe forms when the
A

N = 2nfA\ ~
phase change ¢(t2) ¢(tl) =513 Te)

In the case of noise due to thermal convection, the fluid mechanics
and turbulence is such that relatively low-frequencies and amplitudes
contribute to the noise. Thus, by an appropriate choice of At, we can
largely eliminate the effects of thermal convection. In simplified form,
the vibrating plate displaces an amount (m  cos tl)At between exposures

*The pulsed laser exposes the hologram in approximately 50 x 109 sec.,
and as such acts much like a Dirac delta function applied at times ty and ty.
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of the hologram, but the thermal convection currents simply do not
change between exposures (since the convection is really “slowly-varying"
in time).

The reader should recognize that the turbulence (which leads to
the noise N) depends upon temperature. Thus, as the temperature increases,
so does the noise and it might become necessary to adjust the time-delay
At in order to satisfy the inequality (2-10). Our experiments were
conducted using At = 50 usec between pulses, and mode shapes were recorded
successfully (with little or no noise) up to 2000°F. However, it appears
that for each time delay At there is a maximum temperature @max above

which the noise effects become significant, i.e., when NAt is not small
in comparison to A/2. At these extreme temperatures, the hologram
becomes '"corrupted" or distorted by the presence of the noise and does
not faithfully record the deflection shape.

Interpretation of the Fringe Patterns:
Displacements and Mode Shapes

The reconstructed image from a holographic interferogram possesses
dark bands or lines, called interference fringes. (Examples of such
fringes are given in Figures 2 and 4.) A major feature of holographic
interferometry is that it allows us to measure the displacements of a
vibrating structure, by relating the displacements to the dark interference
fringes.

Several papers have been published which deal with the relations
between a displacement field and the corresponding holographic interferogram.
(For a general discussion of the problem, see References 7, 8, and
9.) A step-by-step, detailed derivation of the governing equations is
given in Appendix A of Reference 17, which deals with time-average, real-
time, and double-exposure holography.

We are concerned herein with the results for double-exposure holo-
graphy, and the equations can be expressed conveniently in vector form,
as shown in Ref. 9 . 1Imn particular, Ref. 9 shows that the reconstructed
image of a hologram exposed twice to an object which has deformed between
exposures will exhibit dark fringes on parts of the object wherever the
condition

FOE S > _(2n &£ DA
§ (n:,L + nv) 5 (2-11)

is satisfied; where
>

§ = the displacement vector

A = wavelength of the light from the laser used to
make and reconstruct the holographic images

16



B = |

W2
1l

unit vector in the direction from the ebject
to the illuminating source

>
n = unit vector in the direction of view, from the
object through the hologram teo the observer

n = integer, the fringe order, +1, +2Z, +3, etc.

The term g . (Ki +-3§) is dillustrated by the vector diagram shown in
Figure 5. The term‘(zi +-3§) is a vector sum, and it is represented by
a vector which lies in the plane containing ;i and ;v and biseets the
angle between them. The magnitude of this vector sum is 2 cas %(K&, 3;)
where (;., ;§) is the angle which is bisected. Finally, thg+dot product
g . (3; + ;§) is the projection of the displacement vector ¢ in the
direction of (;i + K&), as shown in Figure 5.

A particular case of Equation (2-11) which occurs frequently in
practice is illustrated in Figure 6. Referring to Figure 6, the structure
of interest (the heated plate, for example) lies in the x-y plane.

Ignoring variations in the y-direction, we have for the illumination and
viewing vectors

> . ¥ . >
o, = (sin Gi) i + (cos ei)k
> + > (2-12)
and n = -(sin 08.) 1 + (cos 8 )k
v v v

> ->

where 1 and k are unit vectors in the x and 2z directions, and

the angles ei and ev are shown in Figure 6. Now denote the displacement
>

vector, 6, by its x, y, and z components:

e - - >
§ =ui+vij+wk (2-13)
Forming the dot-product in Equation (2-11) we have

. et _ (Cn + 1))
usin ei sin ev) + w(cos 6i + cos ev) = > (2-14)

For transverse vibrations (of plates, beams, shells, etc.) it is usual
that the deflection, w, is much greater than the in-plane displacement,
. In addition, many experiments are purposely designed such that the
angles ei and Bv are very small (i.e., less than 5°). Under these
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conditions, Equation (2-14) is well-approximated by

_ (2n + 1)A ~ (2n + 1)X
2(cos ei + cos ev) 4

w (2-15)

Equation (2-15) relates the transverse deflection w (between two
exposures of the hologram) to the interference fringe pattern of the
reconstructed image. Thus, a black interference fringe for which the
fringe order n =+ 1 corresponds to a deflection (at the fringe location)

of w= % between exposures. Similarly, the n = 2 dark fringe corresponds
to a deflection w = %% . Thus, the interference fringes can be regarded
as "contour lines' (as in the case of terrain maps of topology) of equal
amplitudes of displacement. These contour lines (on which the fringe
order is constant) vary over the surface of the plate, (x, y), and give

a readily-interpreted overall view of the plate deflection. For example,
the idea of axi-symmetric waves propagating radially outward is clearly
apparent from Figure 2, and the vibration of a rectangular plate in

the 1 by 2 mode is clear from Figure 4.

To obtain quanitatitive data for the deflection, w, as a function
of space (x, y), it is necessary to employ the holographic equation
(e.g., 2-15) and to locate the fringe on the surface of the plate. For
example, by placing a ruler parallel to the edge of the plate on the
photograph (such as Figure 4) we can locate the x-coordinate of the
fringes for any given y value. Then, using Equation (2-15) we can
determine the deflection, w, at these x-locations. The results give
discrete data points, which show the deflection w at particular locations
(xi, yi). As an example, for resonant vibrations of a simply-supported

rectangular plate, the vibration mode shape is given by (Ref. 23)

= _ oio DX _._ DOTy _
W ¢hn(x, y) sin == sin ¢ (2-16)

where a, b are the lengths of the sides of the plate, which coincide
with the x and y axes. Normally, one determines the deflection
w along lines where E%Z = n/2 is a constant, and thus obtains the
x~-dependence (or vice-versa). A plot of a typical vibration mode obtained
in this fashion is shown in Figure 7.* Similar results, obtained at

* The reader should note that Figure 7 was obtained from a time-average
hologram, for which the fringe interpretation is different than Equation
(2-15). See Ref. 16 for a discussion of time-average holography.
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Figure 7 - Mode Shape of the 1x2 Mode Shown in Figure 2. (Ref. 17)
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high temperatures through the use of pulsed differential holography,

are presented herein (see Sections 4.0 and 5.0 ). With this information
as background, let us now consider the special case of pulsed differential
holography applied to sinusoidally vibrating objects.
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3.0 PULSED DIFFERENTIAL HOLOGRAPHY
APPLIED TO VIBRATING OBJECTS

Introduction

The basic ldeas of pulsed differential holography have been described
in Section 2.0. The present section discusses some of the practical
aspects of the problem when the structure is vibrating sinusoidally in
a normal mode. Approximate results for small time delay are given herein,
as well as the general case of arbitrary At. The "sensitivity" of the
pulsed differential technique is discussed, i.e., its ability to detect
a particular vibration amplitude at a given frequency, assuming the time
delay, At, is fixed. The influence of "noise'" (due to random mechanical
or optical disturbances) is also considered.

Harmonic Vibrations in a Single Mode
Consider the resonant, transverse vibrations of a flat plate;
the lateral deflection, w, is given by

w(x, v, £) = A ® (%) sinw ¢ | © (3-1)

where Ao is the (maximum) vibration amplitude

o

m (x, y) describes the shape of the m-nth vibration mode, and

w =21f is the vibration frequency
mn mn SR

For example, if the plate is rectangular, isotropic, and simply-supported,
we have the familar results (Ref. 23)

_ g DUX Wy
mode: ¢hn(x’ ) sin == sin =

D 1/2 mw 2 4} 2
frequency: “mn = <p_h) [(_a_) * <%) ]

For discussion purposes, it is simpler to focus our attention on
a particular point on the plate (point P, with co-ordinates x_, y ).
Then Equation (3-1) can be written as p

w(xp, yp, t) = Asinuw t (3-2)

23




where

A= A.0 ¢ﬁm(xp’ yp) is the local amplitude of vibrationm,
and w = 2vf is the vibration frequency.

Now recall that our pulsed differential hologram records the
relative displacement between two exposures, made at times t1 and

t2 = (t1 + At), respectively. Equation (2-15) can thus be combined with
Equation (3-2) above to yield the relative displacement

W, - W A sin m(tl + At) - A sin wt

1

_ (20 + DX
e (3-3)
Equation (3-3), describing sinusoidal motion that is instantaneously
recorded at times £y and t, (by the light pulses from the laser) is
illustrated schematically in Figure 8.
We refer to the product @utl) as the "initial phase," and the
term (wAt) as the "change in phase," respectively. Equation (3-3) is
valid for all values of the initial phase and the time delay At. For
small values of At, the results can be simplified somewhat, as shown
in the following paragraphs.
Approximate Results for Small Time-Delays
Equation (3-3) can be expanded using trigonometric identities and
the small~angle approximations
sin(wAt) & (wAt)
cos (wAt) = 1 - O(At)2
which are wvalid when
w(At) <<1 (3-4)
The result is
W, —w, = w A(At) cos w &, = L2n + D2 (3-5)
2~ M 1 4

which is just a special case of the Taylors expansion discussed previously
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(see Equation 2-4 ). The product w A cos w t. in Equation (3-5) is

just the velocity, ¥, evaluated at time tl.

The reader should note that the spatial (x, y) dependence of the
deflection is hidden in Equation (3-5), but it is present, nevertheless.
The interference fringes (lines along which the fringe order n is
constant) are curves which vary in x and vy (i.e., in the plane of the
plate). Similarly, our "local amplitude", A, is really a function of
x and y: A= Ab ¢hn(x’ y). Thus, a pulsed differential hologram can

1

be used to determine mode shapes ¢En(x’ y) by means of Equation (3-5).

Two examples of holograms made in this fashion are shown in Figures 9

and 10, which involve vibrations of a plate at room temperature. It is

clear from these results that differential holograms can be used to

record vibration modes. The sensitivity of this technique - its capabilities
and limitations — are discussed in the section which follows.

Sensitivity. Curves: Capabilities and Limitations

Using the relation w = 27f, Equation (3-5) can be written as

20f (At) A cos w t; = (z—nfz’—ﬂ (3-6)
or, solving for the local amplitude, A, we have
A= 4(§§E)fﬁigxcos w ty (3-7)
or
A=TF@, A, £, At, tl)
in functional form. Recall that Equation (3-7) is valid only when the
inequality
w(at) << 1
is satisfied. This relation can be put in the form
ér—t <« -21? (3-8)

2r _ 1

vhere T = = is the period of vibration. We see, then, that the

time delay between exposures of the hologram must be small in comparison
with the vibration period, for our approximate Equation (3-7) to remain
valid.
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Figure 9 - Differential hologram of the fundamental mode. (At =
50 ps between pulses). First pulse synchronized to occur
when plate has maximum velocity. (f = 138 cps)
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Figure 10 — Differential hologram of 1 x 2mode, (At = 25 us
between pulses). Laser sychronized to displacement
transducer. (f = 342 cps)
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To determine the sensitivity of the pulsed holographic system, we
want to find the minimum value, A, for which Equation (3-7) holds. The
minimization is subject to practical comstraints on the variables (a, A,
£, At, and tl). For example, with the pulsed ruby laser used in our

(-] -
experiments, A dis fixed at 6943A (i.e., 6.943 x 10 > cm). Similarly,
the time delay between successive laser pulses is limited (by the
electronics) to the range

1 pus < t <500 us (3-9)

Finally, for recording the mode shape, ¢hn(x’ y), we want at least some

minimum number of fringes (nmin) enclosing each antinode.

To minimize A in Equation (3-7) it is clear that the term cos(w tl)

in the denominator should be made a maximum. This is accomplished expermentially
by synchronizing the laser pulse with the plate vibration such that effectively

t1 = 0. (The plate velocity, ¥, is a maximum at t1 = 0.) With these

restrictions on A, At, n and tss Equation (3~7) yields

5

(2n_, - 1)(6.943 x 10"~ cm)
A = —min (3-10)
4(2wE) (L)
where At is subject to the inequalities (3-8) and (3-9).
At this point, it is simplest to comsider At as a parameter, and
also to fix o oin at some nominal value (say n = 5). Equation (3-10)
gives the minimum amplitude, Amin’ as a function of frequency. For
example, with L 5 and the time delay At = 100 ps we have
-5
9 (6.943 x 10 ) 1
Anin = \Z -6y \F
(6.28) (100 x 10 ")
_ 248 _
Amin =—F (3-11)
where Amin is the vibration amplitude in centimeters.

Equation (3-11) has been plotted in Figure 11, for various values
of At, and a fixed number of frinmges, n = 5. Thus, with a time delay
At = 100 ps (between laser pulses), and a plate vibration frequency of
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Figure 11: Vibration Amplitude A, Reguired to Produce Five
Interference Fringes on a Pulsed Differential Hologram
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1 cps, vibration amplitude A = .248 cm (approximately .1 inch) is
required to produce five interference fringe contours around each antinode
of the vibration mode. Similarly, if the vibration frequency £ = 100 cps,
the required amplitude (using the 100 ps time-delay) is 2.48 x 103 em

(or approximately one-thousandth of an inch) to produce five fringe
contours.

The question of increasing the sensitivity of this pulsed differential
technique naturally arises. If the experimenter is satisfied with fewer
fringe contours (and correspondingly less definition of the vibration mode)
he could operate with lower values for N the fringe order. For

example, using Do = 2 (two fringe contour lines) Equation (3-10) gives

.0826 . .
Amin == (in cm) (3-12)

using At = 100 pus. Equation (3~12) represents an increase in sensitivity
by a factor of three, when compared with Equation (3-11). (But, this
increase in sensitivity has been accompanied by the formation of fewer
fringe contours.)

Another means of increasing the sensitivity is to increase the time
delay (At) between pulses. Thus, when At is increased from 100 us to
250 pus, the sensitivity increases by a factor of 250:100 = 2.5. Thus,
if the plate vibrates with frequency £ = 1 cps, and a time-delay
At = 250 pus is used,a vibration amplitude A = .1 cm is required (to
produce five contour frimges). Conversely, if At is halved (from 100 us
to 50 us) the sensitivity decreases by a factor of two. This inverse
dependence on At is apparent from Equation (3-10) and accounts for
the "parallel-line" nature of the curves shown in Figure 11.

It is not possible to continue increasing the sensitivity by using
larger and larger values of At, however, since other effects (not
described by Equation 3-10) enter the problem. First of all, Equation
(3-10) is limited by the inequality (3-8) to "small" time-delays. Secondly,
as At becomes larger we approach the time scale of the turbulence and
fluid mechanics of thermal convection past the heated plate, and the
hologram can become corrupted by this "noise'. WNevertheless, it is
instructive to examine Equation (3-3) for the case of large time-delays,

when the limitation At/T <<~é%- does not apply.

For example, if we choose the times t. and At properly, and

1
adjust them to correspond with the period of vibration, it is possible
to find a minimum amplitude limit (i.e., a semsitivity curve) that is

independent of frequency. In particular, we choose t1 and At such that

wty =5 (initial phase)
wAt = 7
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which is equivalent to

3w 3

t, =5L =T

1 2w 4 (3-13)
m T

At =03

This timing is such that the first laser pulse (at time tl) occurs when

- (37 ) - o
wl—Asux(z)— A

and the second pulse (one-half a period later) occurs when

N ELA
WZ—A81D(2 +1r)—A

The hologram gives interference fringe contours of the relative
displacement

. (2n+ DA _
Wy =Wy = 24 = i (3-14)

(see Equation 2-15).

Equation (3-14) is independent of the vibration frequency, f,
because the times tl and At were chosen to coincide with the maximum

and minimum excursions of the sine wave, namely + A. If we again choose
a minimum number of fringes as noao = 5, then Equatiomn (3-14) gives
the amplitude sensitivity

A. =22=7.8%x10" cm (3-15)

min

[oo]RTe}

as the vibration amplitude required to form 5 fringes around an antinode
of the vibration mode. This "absolute, 5 fringe limit" (Equation 3-15)
is plotted as a horizontal line in Figure 11. The reader should note
that this "limit" was derived without regard for the constraint Equation
1 us £ At £ 500 us which is a physical limitation for our particular
laser-electronics package.

Finally, if the number of fringe contours is reduced (to n in 2,

say) so we have less definition but more semnsitivity, then Equation (3-14)
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gives

Z 32 _ =5 -
Amin =3 = .26 x 10 © cm (3-16)

for our (idealized) case of ''peak-to-peak" timing of the laser pulses.
P D

Another special case of Equation (3-3) which is not limited to
small time delays is given by the timing

e At
2 (3-17)
At
tz = tl + At = 2
which involves laser pulses that are symmetric ir time about the point
t = 0. In this case, Equation (3-3) gives
W, — W, =2 A sin w e _, A sin(wfAt)
2 1 2
or
2 A sin(wfAt) = Qn_z_-ﬂ (3-18)

Equation (3-18) is an exact result (assuming sinusoidal motfon and the
symmetrical timing just discussed) which reduces to Equation (3-10) when
the linearization

At 1

is applied. With At < 250 us, Equations (3-18) and (3-10) give identical
results for frequencies up to 1000 cps.
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Effects of Geometry: Change in Sensitivity

The calculations of the preceding section are based upon the
relation

_ _ (2n + )X
Wy - Wy = S (3-19)

which relates the relative displacement (between exposures) to the fringe
order n and the laser wavelength, A. This equation is discussed in
Section 2.0, and is limited to "small" illuminating and viewing angles:

6 <« 1
v

(3-20)

B, «<1
i

(The angles ei and 6, are illustrated in Figure 6, Section 2.0.) Initial
tests were run using small angles ei and ev, and they are reported in

Section 4.0. However, it later became necessary to examine the case
of large values for ei and ev, as discussed in the following paragraphs.

For the 2000°F experiments on heated plates, it was desired to
place quartz radiant heat lamps close to the vibrating plate and to
record the holograms of the same (hot) surface. The close proximity
of the heat lamps required that the vibrating plate be viewed (and
illuminated) using very shallow, ''grazing angles", as illustrated in
Figure 12. These shallow angles (labeled € and €, in Figure 12) are

related to Gi and ev by the equationms

@
I

w/2 - e;
(3-20)

@
H

w/2 - £y

which are apparent from the geometry. Under these conditions, the angles
ei and Bv are large, which means the cos 6 terms must be retained in

Equation (2-15). The result is

W, - W, = (20 + 1)A
2 1  2(cos ei + cos ev)

(3-21)
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which may be written in terms of the complementary angles (ei and ev) as

_ (2n + 1)A
Vg =W = 2(sin €. + sin €_) (3-22)
i v
For simplicity, consider the case of equal angles when €, =€, = E.
Then Equation (3-22) becomes
_ _ (2n + 1) _
V9 "% "% sin e (3-22)

which is identical to the previous case (Equation 3-19), except for the

factor (sin a)_l.

The influence of the grazing angle e 1is clear, then, and we
can simply modify the calculations of the preceding section by the factor

(sin s)-l. For example, when ¢ = 7/2, we regain the previous results,
such as Figure 11. When the angle e is reduced to 20°, we have a loss
in sensitivity by the factor 1/sin 20°. 1In other words, the vibration
amplitude required to cause five contour fringes is (cf. Equation 3-22)

A oe28f 1
min f sin 20°

_ 725 = 20° —
A.Inin ==z (e = 20°%) (3-23)

where Amin is the vibration amplitude in cm,

f is the vibration frequency in cps,

n ., =5 (five fringe contours form)
min

and At = 100 us time—-delay between laser pulses.
Equation (3-23) represents a loss in sensitivity by approximately a factor

of three, when compared to the case of "normal" viewing given by Equation
(3-11). Similarly, when the angle € = 10°, the result is

Apin =% (sin 10°>‘ g (cm) (3-24)

which represents a loss in sensitivity by a factor (simn 10°)’1a: 6, with

respect to mormal viewing.




These results are illustrated graphically in Figure 13, in which the
line (e = 90°) is identical to the line At = 100 ps of Figure 11. TFigure 13
shows the effect of changes in the grazing angle, where Figure 11 illustrates
changes in At. It is of practical interest to note at this point that the
experiments described in Section5.0 employed a grazing angle in the range

5° < e < 10° (3-25)

and achieved successful results. The extreme case (¢ = 0) is a "singular

point" in the theory which implies that an "infinite" displacement

(w, - w,) is required to cause a fringe on the interferogram. To analyze
2" M 1

the case of very small angles (e + 0) requires that the finite size of the
experiment be considered. That is, the finite path of the light rays from
the laser, to the object, and to the hologram becomes involved, and the
approximation that the laser source (or hologram) is "off at infinity"
can no longer be employed.

Effects of Initial Phase and Large Time-Delays

For small values of At, the relation between the vibrating object
(with frequency w and amplitude A) and the fringe order n (of the inter-
ferogram) is
(2nt+1) A

= Aw(At) coswt, = (3-5)

Vg T 1 4

7

2™ ™1
where the product wt, is referred to as the "initial phase'" and relates to
the timing of the fi¥st pulse of the laser.

By the use of a displacement transducer (e.g., an inductance pick-up
or a capacitance probe, etc.) mounted near the vibrating plate, the
sinusoidal displacement of the plate can be electrically monitored. And,
by means of an oscilloscope (with a variable time-delay and gate output)
it is fairly straightforward to synchronize the laser pulse(s) with the
transducer signal from the vibrating plate. Thus, it is possible to
readily adjust the "initial phase" (wt,) in Equation (3-5), and we made
use of this fact previously in going ~from Equation (3-7) to Equation
(3-10), where the latter is based upon wtl = 0, coswt, = 1.

1
A simple experimental demonstration of the more general expression
(Equation 3-5) was made as follows. If the vibration frequency and

the amplitude A are held constant, as well as the time-delay At, then
Equation (3-5) can be expressed as

2n +1)A
£—22=—l— =K coswt1 (3-26)

where K = Aw(At) is a constant.
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The test was run by vilrating a plate at constant amplitude and
frequency, but varying the time tl of the initial laser pulse. The time

delay between pulses (At) was held constant at 50 us. Several differential
holograms were obtained in this fashion, and the factor (2n + 1)A/4 was
determined at an antinode of the vibration mode. The results are plotted
in Figure l4. which shows the factor (2n - 1) plotted vs. the initia.

phase (wtl).

Equation (3-26) predicts that the factor (2n + 1) should vary at a
cosine function, and this conclusion is borne out by the data shown in
Figure 14. Each data point in Figure 14 required a separate interferogram,
corresponding to each value of the phase wtl. A total of fifteen

differential holograms were made in this fashion, and the corresponding
phase values (mtl) were varied to span a full period of the cosine, as

illustrated in Figure 14,
Additional tests were conducted to verify Equation (3-3)

w, =w, = A sin (t1 + At) ~ A sin wt

2 1 1
_ (2nt1) 5
= e (3-3)
This equation can be written as
QB%—D—A = Alsin(¥ _ + &) - siny ] (3-27)

where wo = wt, is the initial phase and A = (wAt) is the change in phase

1
between exposures of the hologram.

Tests were run to verify Equation (3-27), in which the amplitude and
frequency of vibration were held constant, the initial phase ¥ was kept
fixed, and the phase change (wAt) was varied. The results are shown in
Figure 15, which gives (2n + 1) plotted vs. (wAt). The number of quarter
wavelengths recorded on each interferogram were determined at the antinode
of the vibration mode. Equation (3-27) predicts that the quantity
(2n + 1)A/4 should vary sinusoidally with AP, and the results depend upon
the initial phase, ¥ . For our tests, the initial phase was very nearly
given by °

4’0 ~- 7n/2

in which case Equation (3-27) gives

iz—n—?ﬂ =~ A[1 - cosAV] (3-28)
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The data of Figure 15 have the general form of Equation (3-28), and the
slight differences between theory and experiment are attributed to the fact
that the initial phase was not exactly - 7/2.

These tests were conducted using a vibration frequency of 645 cps,
and the time delay At was varied from 90 us to a maximum of 460 us between
exposures. Additional tests were rum using very short time delays, and
the results are shown in Figure 16. Equation (3-5) predicts that for small
time-delays, (2n -~ 1)A/4 should vary linearly with At, and this result is
borne out by the data of Figure 16.

These experimental results serve to verify the functional forms
predicted by analysis. For any given vibration amplitude and frequency,
the number of fringes that will form can be accurately calculated, given
the initial time tl and the delay At. Conversely, if the time delay is

fixed (At = 50 usec, for example) and the time t1 is known, the sensitivity

can be calculated in terms of vibration amplitude (A) and frequency

(w = 2nf). Such results have been presented in previous paragraphs.
Mechanical Noise: Stability Requirements
The effects of noise (i.e., undesirable vibrations of one type or
another) and the mechanical stability required of the experimental set-up

can be estimated as follows. Consider a total deflection w(x,y,t) that is
a combination of a signal (which we wish to detect) plus noise.

w = S(x,y,t) + N(x,y,t) (3-29)
In particular, let the signal S and the noise N both be oscillatory:

Signal: S(x,y,t) = Aéb(x,y) sinwt
(3-30)

Noise: N(x,y,t) Nog(x,y) sin (vt + ¥)
The signal has a maximum amplitude AO, a distribution §(x,vy), which

is the mode shape, and a frequency w. Similarly, the '"noise" has amplitude
No’ a spatial distribution g(x,y), a frequency v and a phase y (which is

relative to the signal, coswt).

A differential hologram records the relative displacement, w, — W

H)
given by 2 1
W, =Wy = At[Aowi)coswtl + vNog cos(vt1+¢)] (3-31)
where the "small time-delay" assumption
wAt << 1
(3-32)
VAt << 1

has been used (cf. Equations 3-4 and 3-5).
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Referring to Equation (3-31), we want to record the term Aéb(x,y)
(the vibration mode shape) and reject the noise Nog(x,y). The shape

distributions &(x,y) and g(x,y) are assumed to be normalized, and thus
satisfy the conditions

bM< 1 , le(x,y)] < 1 (3-33)

and similarly, we have

[cosmtl]_i 1, Icos(vtl +P))<1 (3-34)

Thus, to have a large signal-to-noise ratio, Equation (3-31) suggests the
requirement

on >> WN_ (3-35)

which says that the maximum velocity (on) of the plate vibration we wish
to record should be significantly greater than the velocity (vNa)of the
oscillatory noise.

Equation (3-35) does not tell the complete story, however. For
example, with very poor timing, we might have Icosmtll << 1, which would

greatly reduce the signal term in Equation (3-31). In practice, the signal
from the displacement transducer will usually allow accurate synchroniza-
tion, such that wt, = 0 and coswt, = 1. With this "exact" timing,

Equation (3-35) c&@n be revised to

oncb(XsY) >> VNog (x,y) (3-36)

For all but the fundamental mode, the mode shape ®(x,y) has nodal
lines, where

d)(x’Y) =0 (3-37)

and, if the distribution g(x,y) does not coincide with the mode shape @)
then the inequality (3-36) cannot be satisfied near the nodal lines.

As a practical example, the plate might be vibrating in a mode

d(x,y) = sin ﬂax sin B%X (3~38)

and the plate boundaries (i.e., its support frame) might be moving in a
“rigid-body" fashion, corresponding to

gx,y) =1 (3-39)
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In this case, the "noise" vNocos(wt + v) might cause fringes on the
interferogram near the nodal lines

mx _k ny _ -
2 5 b (3-40)

N e

(vhere m,n,%, and k are integers).

One way to largely eliminate the effect of the noise is to insure
that its amplitude and frequency satisfy the "no fringe" condition

IvNO(At) | << % (3-41)

along with the inequality (3-35). Equation (3-41) states that the noise
will not cause a fringe to form, even in the vicinity of nodal lines.
Equation (3-35) insures that the contour fringes which do form will be
caused primarily by the vibration Aéb(x,y) siniwt which we desire to measure.

A feeling for the amplitudes and frequencies involved in Equation (3~41)
can be obtained from Equation (3-10) and the related discussion on sensi-
tivity. Using At = 100 ps, and n = 5, the sensitivity of the pulsed
differential technique was calculated to be

_ .248 . _
Amin =5 (in cm) (3-11)

Equation (3-41) corresponds to oo 1 and gives

<< 27(.248)
o v

1, _ .0276 _
(5) =3 (3-42)

N

N

as the noise amplitude (in centimeters) in terms of noise frequency fN’

(using the same At = 100 ps between pulses of the laser). Equation (3-42)
is directly analogous to Equation (3-11), and the sensitivity curves
presented previously (Figure 11) can be used to estimate the maximum noise
amplitude No at a given noise frequency fN' (The factor of 2w arises

because v = ZWfN is a circular frequency).

Thus, with At = 100 us, Equation (3-42) results in a linear "noise
boundary" parallel to the diagonal lines of Figure 11, and at a factor of
nine lower in amplitude than the corresponding sensitivity curve. In the
special case where the undesirable noise No and the signal A coswt have

the same frequency (v= w, £,_ = f) then Equation (3-35) simply states that

N
the noise must be appreciably less than the signal.
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In actual practice, many industrial enviromments are such that the
noise amplitude falls off as frequency increases. Building vibratioms,
seismic disturbances, and motions due to vehicular traffic teand to be
low frequency. High-frequency vibrations, on the other hand, tend to be
damped out more readily, do not generally propagate far from their source,
and can (if necessary) be prevented from influencing the hologram by vibra-
tion~-isolation and simple mechanical filtering.

Although we have examined the special case of harmonic noise,
N(x,t,t) = Nog(x,y) cos(vt + )

the more general case of random vibrations (with N characterized by its

power spectral density) can also be treated. TFor example, the power spectral
density P(f) gives a measure of the amplitude (squared) at a particular
frequency f. As a first approximation, one might require

1/2 A

2nE[P(£) ] (At) << A (3-42)

by analogy with Equation (3-41). Thus, for any value of At, we can compute
an upper bound on the power spectral density P(f) of the mechanical noise.
The limitations on P(f) computed from Equation (3-42) are expected to be
very comnservative; that is, one anticipates that in many cases fringes (due
to noise) will not form even though P(f) fails to satisfy Equation (3-42).

A thorough treatment of the problems of noise and stability would
involve a careful analysis using probability theory and random variables.
For a given noise input (characterized by its P.S.D., say) one can then
calculate the probability of the event

N(At) 3% (3-43)

i.e., the probability that the noise will cause a fringe to form. Such an
analysis was beyond the scope of the present study. The problem of
extracting signals in the presence of noise is fundamental to communica-
tions theory (e.g. Ref. 24) and is related to holographic measurements in
the presence of random vibrations. (See Refs. 18 and 19, for example).

For the experiments reported herein, there were virtually no problems
which arose due to noise, spurious vibrations, or lack of mechanical
stability. Wooden tables and ordinary lab benches were used to support the
optics, the plate specimen, the shaker, etc., and no attempt was made at
vibration isolation of these components. The individual stands for the
mirrors, lenses, etc., were gemerally held lightly in place with a small
drop of glue, which is a carry-over from cw holography and helps keep the
optics aligned. This represents the extent of the stability problems which
were encountered experimentally. The development of precise limitations
on noise (which are less stringent than those presented herein) will very
likely depend upon pending applications of pulsed laser holography in noisy
environments. For example, some applications of holographic nondestructive
testing (HUNDT) involve operations near noisy machinery, production lines,
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etc. If the noise in these applications becomes a problem, then the
question of recording structural deformations (while rejecting the noise)
will receive the increased attention necessary for its solution.

Limitations on the Time-Delay and Plate Temperature

It is expected that most plate vibration problems of interest to NASA
will fall somewhere in the ranges

Frequency: 1 cps < £ < 1000 cps
Temperature: 78°F < © < 2500°F
-5 (3-43)
Amplitude: 1.75x 10 " cm < A < 100 cm
Velocity: .25 cm/sec < wA < 10° cm/sec

where it is assumed that the plate is vibrating sinusdidally with a trans-
verse deflection w = A sin(wt) = A sin(2nft).

These limits (specified as Equation 3-43) are only approximate, and
they are given here primarily as a basis for discussion. Some of the limits
given are flexible and readily changed to meet new situations; others are

fixed by physical limitations, such as the wavelength of light, etc. ¥For
example, the frequency range could just as easily be

.1 cps < £ < 10,000 cps (3-44)
providing the velocity criterion

wA > .25 cm/sec (3~45)

is still satisfied. This velocity requirement (3-45) is based on the
approximation of a small time—delay At between exposures on the order of

100 usec. If it is possible to use At = 250 usec, then the velocity require-
ment can be relaxed to

wA > -.1 cm/sec (3-46)

The lower 1imit on vibration amplitude is fixed by the wavelength
of light (A) and the theory of double-exposure holography. Thus, we have
the constraint on the vibration amplitude

A>2~1.75x107 cn (3-47)

in order that at least one fringe forms on the interferogram.
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For harmonic motion, the maximum vibration amplitude (set at
A < 100 cm) and maximum velocity (wA < 10° cm/sec) have been chosen arbi-
trarily, and they are subject to considerable leeway. By appropriate
synchronization of the laser pulses with the plate vibration, it is possi-
ble to record the relative displacement wy - Wy when the plate velocity
is nearly zero. When the plate reaches its maximum excursion, the velocity
goes to zero, and small relative displacements wy — wy will occur in the
time At = t, - tl’ regardless of the maximum vibration amplitude, A. This
idea was demonstrated in Ref. 15, which showed holographic measurements
on a plate vibrating to large amplitudes (.5 inch, peak-to-peak). Similarly,
the maximum velocity wA is not strongly limited, as long as the velocity w
goes to zero periodically (harmonic motion again).

Now consider the limitations on the maximum temperature, Op,.. The
maximum temperature at which the differential pulse technique will success-
fully record vibration modes depends upon

o The time delay, At, between exposures
o The vibration amplitude A and frequency £

o The atmospheric medium, and its index of refraction as a
function of temperature

o The orientation of the heated plate surface, e.g. vertical
or horizontal

o The size of the plate

A thorough discussion of this problem involves fluid mechanics and heat
transfer in free-convection boundary-layers (Ref. 20). However, we can
imagine a hypothetical example in which the plate is standing vertically
in air and vibrating with a given amplitude and frequency; the time-delay
At between pulses is presumed to be set (at 250 usec, say) and differ—
ential holograms made at room temperature 9 produce an adequate number
of contour fringes. Now, imagine we begin heating the plate, and keep
the parameters A, f, and At fixed. We continue recording differential
holograms at various increasing temperatures, O;. Eventually, the tur-
bulence from the convection currents becomes significant, such that the
noise (due to random changes in optical path length) can no longer satisfy
Equation (2-10):

N At << A/2 (2-10)

At this point, the noise begins to distort or corrupt the mode shape we
are trying to record on the differential hologram. Some noise will be
tolerable, however, depending upon the quality of the mode shape data
required.
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As the temperature continues to increase, we reach the point where
N(at) >> A/2 (3-48)

and the noise can overwhelm the signal from the vibrating plate. Depending
upon the mode shape, amplitude, frequency, etc., we can thus establish a
maximum temperature, Op.y, above which the holograms are too "noisy" and
unacceptable for determining the mode shape.

Now suppose we determine this temperature to be O, = 1400°F, and
we wish to conduct tests at 2200°F. The most direct approach for increas-
ing the allowable temperature is to shorten the time-delay. For example,
if Onax = 1400°F using At = 250 ns between exposures, we can shorten At
and reduce the noise term N(At). Thus, using At = 100 ps, we might be
able to record mode shapes up to a new maximum temperature, Op.. = 2000°F.
Finally, we might try At = 50 ps and reach the goal of recording mode
shapes at 2200°F.

The relationship between the maximum plate temperature, Op,., at
which mode shapes can be adequately recorded and the time delay, At,
between exposures, involves complicated fluid mechanics of thermal con-
vection on vibrating surfaces and is not readily calculable. It seems
clear, however, that long time-delays will result in lower operating
temperatures, Op,.. For the experiments described in Sections 4.0 and
5.0, a time—-delay At = 50 us was used throughout, and good quality noise-
free mode shapes were recorded at 1000, 1600, and 2000°F.

Results for Random Firing of the First Pulse:

Probability Calculations

Many of the preceding results (e.g., Figures 56, 57, 58) are based
on the idea of synchronizing the laser pulse(s) with the vibration of the
plate. In particular, by electronic synchronization we can (in most cases)
control the "initial phase" (mtl) and achieve the maximum sensitivity of
the pulsed differential technique. (See Equations 3-7 and 3-10, and the
related discussion.)

The experimental details of timing the laser pulses, and the holo-
graphic results obtained using such synchronization are reported in
Section 4.0. However, in some of the experiments (see Section 5.0) it
was simpler to operate without synchronization. In this case, the inter-
ferograms were obtained using a small time-delay, (wAt) << 1, and "random
firing," i.e., the initial phase (wty) varied randomly. Successful results
were obtained with this approach, and the experiment is amenable to analysis
using probability theory, as outlined in the following paragraphs.

Basic to probability analysis is the definition of an event (Ref. 25).
For our purposes, the event is defined by such statements as ''five or more
contour fringes are recorded on the interferogram,'" or "the interferogram
recorded at least one fringe contour," etc. In the case of normal
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illumination and viewing (9; << 1, 0y << 1, Equation 2-15) the event can
be described mathematically by

b, — oy > 122 = DA I LA (3-49)

where we have chosen the fringe order, n, to be positive, and the absolute
value of wg — wy is required since the interferogram is not semsitive to
the sign (i.e., phase) of the relative displacement.

For small time-delays, Equation (3-49) is equivalent to

(2n - 1)

[wat] > 7

(3-50)

vhere v is the velocity, evaluated at time tj. For the problem at hand
we have the relations for the vibrating plate

(Displacement) w = A sin wt

€Aw) cos wt = V cos wt (3-51)

(Velocity) w

Reference 25 shows that a motion
x =V cos wt

(vhere t is a random variable) has associated with it the probability
density function

T V2 —-xz

p(x)
(3-52)

p(x) =0 || > v

I

In our “random firing" experiments, the velocity w is evaluated at time t1,

where t; is a random variable corresponding to the time of the first laser
pulse.

Thus, using our event (3-50) and the probability demsity (3-52) we
can calculate the probability that the event actually occurs:

X

2
P[lt-'rAt[ 352“—;—1M] = f p(x)dx (3-53)
*

where appropriate limits for the integral xq and xp will be determined
shortly. Since the time delay At is_positive, we have the equivalence
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p[lamq B *] - p[m _%ﬂ] (3-54)

The term involving n, A, and At defines a velocity, v,

v, = _L___LZZ (ZJ A (3-55)

And, using Equations (3-52) through (3-55), we have the desired result

v o
P[Iv’vl zvo] fp(x)dx+./v' p(x)dx
v i

Vv
= 2/ p(x)dx (by symmetry)

Il
a N
4 ® )
s
[
[zl
L
° <

_2fn_ 1%
T 2 sin v
p|oae] » -] ;2 -1 (7o (3-56)
— 4 T A

where we have assumed that

v <V
o =~

(2n - 1A < wA . (3-57)

i.e., LAt <

Equation (3-56) gives "The probability that the velocity |w| is greater
than or equal to v,," which is equivalent to "The probability that the
relative displacement between exposures Wy = Wy is greater than or

equal to _Qn_—;)___’.. which in simplest terms, means "The probability that
n contour fringes form on the interferogram." Equation (3-56) can be
interpreted in physical terms as the ratio of (1) the time during which
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the velocity |ﬁ| exceeds Vs divided by (2) the total period of vibration,
T. This concept is illustfated graphically in Figure 17.

To get a feeling for these results, suppose we want five or more
fringe contours to form (n = 5) and wish to use a time-delay At = 100 psec.
Then Equation (3-55) gives

 (n- 1A 9 6.943 x 10> cm
Yo T T 4(ar) & % -6
100 x 10 sec
v, = 1.56 cm/sec (3-58)

At this point, it is convenient to select a desired value for the probabil-
ity p [IﬁAt| > %%]
P = 2/3 might be acceptable, meaning that "2 out of 3 interferograms would
have five or more contour fringes." Thus, if we take

in_l -V_o =2
s v 6

v
i.e., <—°) = .5 (3-59)

» Equation (3-57). TFor example, a probability value

Then Equation (3-57) yields

. 9A | _ _ 2 _
P [lwAtl > 4] =1-=0 =2/3

which is the acceptable probability just postulated.

Equations (3-58) and (3-59) can then be combined to give the amplitude-
frequency relation which must be met in order to achieve the probability
P = 2/3. That is, from Equation (3-59) we have

v
WA =V = -2 = 1.56 cm/sec (3-60)
«5 )
and, using w = 27f, this becomes
A= 1.56 cm/sec _ .496 (3-61)

(2wf)(.5) =~ Ff

wvhere A is the required vibration amplitude in centimeters, and £ is the
corresponding frequency in cps.
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This result can be put into words, as follows. When the amplitude and
frequency of vibration are such that Equation (3-61) is satisfied, and
the timing of the first pulse t; is random, and a time-delay At = 100 us
is used between exposures, then a pulsed differential hologram will
produce five fringe contours with a probability of 2/3.

The reader should note the similarity in form between Equation (3-11)

.248

A=-5

(3-11)

(which assumes ideal synchronization between the laser and the vibration)
and Equation (3-61) just derived, which assumes random firing of the first
pulse. Both equations are based upon (n = 5) and At = 100 ps, but the
former gives maximum sensitivity and probability one, whereas the latter
requires a larger vibration amplitude (in the ratio .496/.248) and results
in a probability of 2/3.

The probability of producing five fringes (n = 5) can be increased

by using a larger time-delay (At) or increasing the plate velocity V = wA,
i.e., making

Af > .496 cm/sec

The reader should be aware of the approximations used in this analysis,
such as the expansion

v, ~w; = w(At) (3-62a)
and the inequalities
At 1
T << o (3-62b)
(2n - 1)2 -
4Ca0) < wA (3-62c)

which together imply the condition

(2n - 2

i < A (3-624)

The probability analysis presented herein is limited by these approximations,
and Equation (3-61) therefore applies only for those amplitudes and fre-
quencies which meet the preceding requirements.
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From an experimental standpoint, it is desirable to fix the time
delay (say At = 50 us, which was actually used) and calculate the probabil-
ity of obtaining one fringe, two fringes, (n = 1,2, etc.) as a function
of amplitude and frequency. This result can be determined using
Equation (3-56) and wvarious n values. Thus, with At = 50 ys and n = 1,

we have
. A 2 . -1{%
P [lWAtI Z_Z} =1-—sin <ZK> (3-63)
-5
where v, = 4(2t) - 6.943 = 196 = ,347 cm/sec
4(50 x 10 )

Similarly, for n = 3, we have

P [IéAt 3_%%]

]
o)
|
|
e
:’l
=
N
=
~J
w
19,1
S’

and for n = 5,

. 9 2 . -1 (3.123
P [lwAt] > 4] 1 , Sin (—;Kf>
These results are plotted in Figure 18 giving the probability P as a
function of the velocity (wA) in cm/sec.
The similar appearance of the curves in Figure 18 suggest a

“similarity solution," which is readily developed as follows. TFor any
value of n, we have from Equation (3-56) the probability

P [IﬁAt| > ﬁgE;i_lll] =1 - %-s:i.n—l (2) (3-64a)

which can be inverted to read

cos GP) =z (3-64b)
Yo
where z = —- can be expressed as
wA
(2n - 1)
4(at) 1
z = wA " 27(RT) (3-65)
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Figure 18 - Probability of Recording n Contour Fringes, as a Function
of the Maximum Plate Velocity (At = 50 ps, Random Firing)



Tmeemsetne D

= é%- is a non~dimensional time, the ratio of time-delay to the vibration
period, and
S S
(2n - 1)
4

is a non—-dimensional amplitude, the ratio of the vibration amplitude to
the number of quarter-wavelengths recorded on the hologram.

Note from Equations (3-62) that R > 1 and 2wt << 1, for the analysis
to be valid. Equation (3-64) gives the probability of obtaining n fringe
contours, as a function of the similarity variable z = (2ntR)~L. The
results are plotted in Figure 19, which is a universal curve that can be
used for various fringe numbers (n), time-delays (At), amplitudes (A) and

frequencies w = %g; For a fixed value of n (say n = 5, again) the proba-

bility of success (i.e., recording five fringes) increases as the amplitude,
frequency, or time-delay is made larger. Note once again that these results
cannot be applied indiscriminately, and are valid only when the approxima-
tions (3-62) are satisfied.

Random Firing Compared to Optimum Synchronization

For given values of the amplitude, frequency, and time—delay, the
"optimum timing" (i.e., maximum velocity) approach presented in
Equation (3-10) gives

(2n - 1)a

wA(AL) = Ja—’;——— (3-66)

where the fringe order nj,, represents the "maximum number of fringes that
can be obtained with optimum synchronization.” (The term "optimum synchroni-
zation" or "optimum timing" simply means firing the laser when the plate
velocity w is a maximum, thus maximizing the product |wAt|.)

With "random timing" (i.e., random firing of the first laser pulse)
Equation (3-56) gives the probability of recording n or more fringes, in
terms of the variable CVO/V). Using the relation (3-55) for the velocity
Vo and V = Ay, we have

(2n - 1) (2n - D2
Yo _ 4ty _ 4 (3-67)
v (Aw) T (Aw At)

The denominator (Aw At) is related to the optimum, maximum fringe number,
N4> through Equation (3-66). Thus, Equations (3-66) and (3-67) can be
combined to give
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Figure 19 - Probability of Recording n Fringes, For a Given
Amplitude, Frequency, and Time - Delay



v

o _ _(2n-1) _

v (2n - 1) (3-68)
max

and we can then substitute this expression for (VO/V) in the probability
Equation (3-56). The result is

p |-|‘;,At‘ s{n =Dt ;2 . -1 (20-1) (3-69)
ST m (2o -1

Equation (3-69) gives "The probability of recording n contour fringes
(using random firing of the first laser pulse) when optimum timing of the
laser will produce np,, contour fringes. (The amplitude, frequency and
time-delay are the same for both the optimum and random synchronization.)
Since the fringe order, n, is an integer (n = 1,2,3, ...), the variable
(2n - 1)/(2nmax - 1) is discrete, and a plot of Equation (3-69) results
in a "stair-step" appearance. Equation (3-69) is illustrated graphically
in Figure 20 for the case nj, . = 5 and in Figure 21 for Npax = 10.

These results are of particular interest from an experimental stand-
point, since Equation (3-69) is independent of the amplitude, frequency,
time-delay, and the illuminating and viewing angles (Oi, ev), providing
the approximations inherent in the derivation (e.g. Equations 3-62) are
not violated. The similarity between the continuous curve of Figure 19
and the stair-steps of Figures 20 and 21 is readily apparent. The
continuous variable (ZﬂTR)"l in the smooth plot is analogous to the dis-—
crete variable (2n - 1)/(2n,,, - 1) in the stair-step graphs. As np.. * ©,
the discrete variable approaches the continuous one and Figure 19 applies,
with z replaced by (n/nmax).
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Discussion of Results

The basic ideas of pulsed differential holography (presented in
Section 2.0) have been applied herein to objects vibrating harmonically
in a single mode. It appears that most practical measurements will
involve small time-delay At, and approximate results have been given for
this important case. The effects of geometry (i.e., low grazing angles),
mechanical noise, and limitations on the time-delay and plate temperature
have been briefly examined. A probability analysis was presented for
the case of random firing of the initial laser pulse and small time-delays
At between pulses.

It is clear that similar problems (of making holograms through
random, turbulent media) arise in other areas, such as holographic measure-
ment of flutter in a wind~-tunnel, which involves passing the laser beam

through the boundary layer(s). Whether such measurements will be success-
ful or not depends upon (i) the signal-to-noise ratio (based upon velocities)

S(at) >> N(At)
and, (ii) limiting the path length changes due to noise
N(At) <<-%

The experimental fact that these requirements can be satisfied for heated,
vibrating plates (to 2000°F) is discussed in Sections 4.0 and 5.0 which
follow.
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4.0 TESTS AT 1000°F
Introduction

Originally, it was planmned to measure plate vibration modes at
1000 - 1500°F using time-average holography (in a vacuum enclosure) and pulsed
differential holography (in the atmosphere). The pulsed holographic measure-
ments appeared more promising, and they were completed first. Problems
involving the plate support (to avoid thermal buckling), exciting and
detecting resonance, timing the laser pulses, etc. were successfully solved
and several mode shapes recorded at 1000°F. The techniques used, the problems
encountered, and the results are presented in the paragraphs which follow.

Plate Specimen and Support Structure

A plate size of 8" by 10" was selected as the platform of the rectangu-
lar plate(s) to be vibrated. It was desired to use a relatively thin plate,
to produce sufficiently low resonant frequencies. Stainless steel (302 or
304 stainless) was selected as the plate material, because of its high-
temperature capability and availability from suppliers.

The main problem to be overcome in designing the supporting structure
for the plate was to prevent thermal buckling.* It was desirable to prevent
buckling, because it results in considerable distortion of the vibration
modes (i.e., the modes of a buckled plate do not coincide with those of an
unloaded, isotropic plate). (From a pragmatic viewpoint, when the vibration
modes were recorded at 1000°F, we wanted to be sure they looked like plate
modes and were credible results.)

Thermal buckling was avoided by using soft tension springs** to apply
an in-plane preload to the plate. The design is shown schematically in
Figure 22, and the actual structure is shown during assembly in Figures 23
and 24. When the plate was heated, thermal expansion occurred in the plane
of the plate, and this expansion was "taken up" by the tension springs
around the edges of the plate. During initial tests of this design, local
buckling (i.e., crinkling) took place near the individual support clamps
(which acted as heat sinks). This problem was overcome by making saw-cuts
through the plate between the clamps, and inserting mica washers as thermal
insulation to inhibit heat flow into the clamps. With this design, and a
plate thickness h = .047", the stainless steel plate withstood temperatures
as high as 1200°F without buckling.

Care was taken to achieve fairly uniform boundary conditions at the
edges of the plate. This was accomplished by machining vee grooves part-
way through the plate, to approximate the case of simply-supported

*It would have been possible to allow the plate to buckle, and then vibrate
it to find the resonant modes of a buckled plate; however, this was not the
objective of the contract.

**Stainless steel springs were used, to prevent relaxation at high-
temperatures.
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boundaries (see Figure 25). Mode shapes were recorded holographically at
room temperature which demonstrated (by their symmetry) the uniformity of
the boundary conditions. (For example, see Figures 9, 10 and 26).

Excitation and Detection of Resonance

The related problems of excitation and detection of resonance are
fundamental to vibration studies. In the experiments reported herein, the
problem was complicated by the high—temperature (1000°-2000°F). High-
temperature piezoelectric transducers are available, and attempts were
made to use them (i) to vibrate the plate, and (ii) to detect the plate
vibrations. (Piezoelectric excitation has certain advantages, and this
method had been used in related holographic studies, Ref. 10 and 17 ).

The piezoelectric constants of available high-temperature crystals are
very small, however, and the technique proved marginal, at best.

The excitation problem was solved directly by using a standard 25-1b.
electrodynamic shaker, which drove the plate by means of a stinger and
spring arrangement (See Figure 27). The spring (which contacted the plate)
was made of stainless steel and was relatively soft to avoid distorting the
plate vibration modes. It was not certain that the spring would continue
to transmit forces when the plate was heated, since relaxation and creep
frequently occur in springs at elevated temperatures. However, this
arrangement operated successfully and was later used in the 2000°F tests.
(From the standpoint of vibration testing and subsequent designs, this
discussion serves to point out that excitation of the heated structure
may present problems, and electro~mechanical driving through springs is
a possible solution.)

The detection of resonance was also complicated by the high-tempera-
tures. Special piezoelectric crystals (with high Curie temperatures) were
tried without success. A condenser microphone was tried, but the tone from
the shaker was detected by the mike and masked the plate response. (Further-
more, it was necessary to place the microphone near the heated plate, and it
might not have survived the associated thermal input.) Capacitor pick-ups
for detecting resonance can reportedly be operated at 2000°F, and they were
considered. However, the detection problem was solved by using a Bently-
Nevada inductance-type transducer*, which is rated by the manufacturer to
operate at 1300°F.

This transducer responds to the plate displacement, provides a strong
output signal, and has good frequency-response characteristics. With the
associated electronics, the transducer produced a sinusoidal signal in-
phase with the plate displacement, A sinwt. The fact that the output from
the transducer was in-phase with the motion of the plate was necessary for
purposes of synchronizing the laser pulses with the plate vibration. With
respect to future experiments of this type, the test designer should note
that adequate frequency-response of the transducer-electronics (with con-
stant phase~lags preferably zero) is necessary for proper synchronization
of the laser. Details of the timing technique are given in subsequent
paragraphs.

*Model 350TM24
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Experimental Set-Up

A schematic diagram of the experimental set—up is shown in Figure 28.
An overall view showing the actual equipment is given in Figure 29. Referring
to Figure 29, a standard oscillator-amplifier arrangement was used to drive
the electrodynamic shaker at the desired amplitude and frequency. An elec-
tronic counter was used to measure the frequency of the input signal. The
displacement transducer (which was used to monitor the plate response) was
positioned in the lower left-hand quadrant of the plate (cf. Figures 9 and 10).
The oscillator, counter, and transducer-related equipment are grouped in the
area labelled "Electronics" in Figure 29.

The temperature of the plate was monitored by a chrome-alumel thermo-
couple welded to the plate surface in the lower right hand quadrant. The
thermocouple output was read with a standard millivoltmeter designed for
such applications. Light baffles (large aluminum sheets) were used to prevent
the light from the radiant quartz heaters from reaching the hologram plate.
(The hologram is represented by a white card in the center of Figure 29.)

Two quartz heat lamps were mounted directly behind the plate, about an
inch or so away from its surface. A standard ther—-mac control unit was used
to provide manual adjustment of the voltage to the heat lamps. The heat
lamps are shown in Figure 30, with the sting from the shaker passing between
them. A photograph showing the sting (with the stainless-steel coil spring
at its end) is given in Figure 31. Note that the input force (supplied
through the spring) was located off the centerlines (i.e., the lines of
symmetry) of the plate. This arrangement was used to allow adequate excita-
tion of both the symmetric and anti-symmetric modes.

The optical arrangement used to make the holograms is shown schemati-
cally in Figure 32. The hologram and object beam were arranged such that
the illumination and viewing angles 6, and 6_ were small (e.g., less than
10 degrees; cf. Figure 6). This results in fhe case of "normal viewing and
illumination" discussed with respect to Equation (2~15). The pulsed ruby
laser used in these experiments is shown in Figure 33 along with its control
units. This laser was built at TRW Systems and has the capability of producing
multiple light pulses (at 6943A) where the time between pulses (At) is
individually adjustable within the range

1 us < At < 500 us (3-9)

mentioned previously in Section 3.0. The multiple pulses produced in this
fashion are mutually coherent, which is a necessary requirement for holo—-
graphic interferometry. (For a discussion of coherence and interferometry,
see Ref. 26).

The synchronization of the laser pulses with the plate vibration
(A sinwt) was accomplished electronically as discussed in the following
paragraphs.
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Figure 30 - Photograph Showing Heat Lamps
and Shaker Behind the Plate (1000°F
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Figure 31 -~ Photograph Showing Shaker, Drive Rod,
and Compression Spring to Excite Vibrations
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Timing of the Laser Pulses

The electrical connections of the equipment used to drive the plate
to resonance and monitor its response are shown schematically in Figure 34.
Both the driving and the motion sensor signals were displayed simultaneously
on a Tektronix 535A oscilloscope, employing a 1Al plug-in using the chopped
mode. (In this mode, to achieve a stable display, a special connection
was required between the Channel 1 Trigger Out connector on the plug-in
and the External Trigger terminal for the time base used). To detect the
peak of a resonance, the driving oscillator frequency was adjusted to give
maximum amplitude from the motion pick up.

Display of the signals in the manner described also provided a con-
venient means for synchronizing the laser output to the plate motion. The
laser required three trigger pulses. The first trigger pulse initiated the
flash lamp discharge to optically pump the ruby rod. * The second and
third pulses triggered the Pockels Cell Q-Switch twice in succession, to
produce the two laser light pulses required for differential holographic
interferometry. The time between the first and second pulses was long
enough for sufficient population inversion to accumulate in the ruby.

Both the second and third pulses were derived internally in the laser system
from the first trigger pulse. They were set to occur 850 and 900 microseconds,
respectively, after the first. This setting produced the desired 50 usec
time-delay between laser pulses.

The method for synchronizing the laser output to the plate motion
involved operation of the 535A display scope in the "B Intensified by A"
mode. The sweep rate of the display was determined by the B Time Base
and a portion of the trace was brightened for a time determined by the A
Time Base. The start of the intensified portion was set by the Delay Time
Multiplier dial. Figure 35 is a photograph of the vibration wave—forms
displayed in this mode. Using this mode of the scope, any desired portion
of the motion waveform could be intensified. Coincident with the beginning
of the intensified portion of the sweep, an output gate pulse appeared at
the A-Gate terminals of the scope. The rise of this gate pulse was used to
trigger the laser flash lamps (Figure 36 schematically shows the hook-up).

By manipulation of the A Time Base, the intensified portion of the
waveform was set to be about 875 microseconds long, a time falling half-way
between the two times set for the Q-Switch pulses. Hence, the start of the
intensified portion was coincident with the firing of the laser flash lamps,
and the end of the bright portion fell about mid-way between the two laser
output pulses. It was an easy matter then to set the laser light pulses to
occur at any point on the motion waveform. The delay time multiplier dial
was simply adjusted so that the end of the intensified portion fell at the
desired point on the vibration waveforms. (For example, see Figure 35).

*
For a discussion of the laser, Pockels Cell, etc., see Ref. 17.
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The 535A oscilloscope used in the set up had one short-coming in that
it lacked a single-sweep feature. Consequently, a continuous train of pulses
was present at the A Gate terminals while the plate was in motion. Such a
continuous repetition of pulses would have resulted in damage to the laser
circuits even while the laser storage capacitors were uncharged. Hence, a
single pulse gate was included in the input leg to the laser (another
oscilloscope having a single sweep feature, was used). Manual tripping of the
gate allowed a single trigger pulse to reach the laser from the 535A oscilloscope
on command, which activated the firing sequence and exposed the hologram.

Some Preliminary Results

Room temperature experiments were conducted first to verify the
electronic timing arrangement just presented. Several pulsed differential
holograms were made at room temperature and compared with time-average holo-
grams of the same modes. Typical examples are shown in Figures 37 through
40, which gave us confidence in the differential method. As a demonstration
that the differential technique would work at high-temperature, a hologram
was made with the flame from a cigarette lighter in the path of the object
beam. The result is given in Figure 41, which shows the fundamental mode
of the plate, unaffected by the turbulence from the flame. (The lighter
is barely visible in Figure 41). This successful demonstration was followed
by the full-scale, high-temperature tests described in the following section.

Test Procedure

First, a brief resonance survey was conducted at room temperature,
with the displacement pick—~up used as a detector. Several modes were
detected, ranging in frequency from 180 cps (the fundamental mode) to
745 cps. The quartz lamps were then turned on, and the thermocouple
allowed to stablize at a temperature of 255°F, whereupon differential holo-
grams were made of the fundamental mode (Figure 42) and the 1 x 2 mode

(Figure 43).
The procedure used in conducting a test and making the holograms was
(1) Vary the excitation frequency of the shaker until a particular

resonance was detected with the displacement transducer. Record
the resonant frequency, as displayed by the counter.

(2) Using the sinusoidal displacement signal displayed on the
oscilloscope, adjust the time-delay to fire the laser at the time
of maximum velocity of the resonating plate.

(3) Load the (unexposed) photographic plate into its holder, then charge
and fire the laser, giving the necessary differential hologram.

(4) Develop the hologram and reconstruct the images to see if the
vibration mode in question had been adequately recorded.

(5) Adjust the excitation frequency to locate the next resonance and
repeat steps 1 through 4 just presented.
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Figure 37(a): Pulsed differential hologram
of the First Mode (m= 1, n = 1) f = 122 cps

Figure 37(b): Time-average interferogram of the
First Mode (m = 1, n = 1) £ = 128 cps
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Figure 38(a): Pulsed differential hologram
of the 3 x 1 Mode (f = 465 cps)

Figure 38(b): Time-Average Interferogram of
the 3 x 1 Mode (f = 467 cps)
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Figure 39(a): Pulsed differential hologram
of the 3 x 2 Mode (f = 673 cps)

Figure 39(b):

Time—-Average Interferogram of
the 3 x 2 Mode (f = 674 cps)
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Figure 40(a): Pulsed differential hologram
of the 3 x 3 Mode (f = 1003 cps)

Figure 40(b): Time-Average Interferogram
of the 3 x 3 Mode (f = 994 cps)
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Figure 41 - Differential Hologram of the Fundamental Mode, Undisturbed

by Thermal Convection Currents. (Lighted cigarette lighter
in foreground; flame is not visible)
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Figure 42 - Differential Hologram of

the Fundamental Mode (1 x 1)

225°F (f = 156 cps, At = 50 us)

Figure 43 — Differential Hologram of the 1 x 2 Mode at 255°F

(f = 346 cps, At = 50 ps)
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(6) If an interferogram (produced in this fashion) does not contain
enough fringes (e.g., no fringes form, or perhaps just one)
the resonance can be excited again, and the vibration amplitude
increased to obtain more fringe contours.

(7) When enough modes had been recorded at a particular temperature,
more heat was applied to raise the temperature and the modal
survey was repeated.

It should be noted that in this test procedure (Steps 1 through 7),
the plate was allowed to reach thermal equilibrium before each modal survey.
The thermocouple reading was recorded (when each hologram was made) and the
thermal stability was such that the temperature varied by at most a few
degrees (+5°F).

Using this test procedure, a few modes were recorded at intermediate
temperatures of approximately 255°F, 515°F, and 708°. The corresponding
interferograms are shown in Figures 44 through 47. Then the temperature
was raised to 1040°F and a more detailed survey was conducted, resulting
in the modes shown in Figures 48 through 55.

The time-delay used throughout these tests was 50 us simply chosen
because it was a convenient setting of the laser control unit. From a
research standpoint, it would have been interesting to maintain a particular
temperature (@ = 1000°F, say) and then make differential holograms using
larger—and-larger time-delays to determine when the thermal convection
noise N(t) began to corrupt the hologram. (See the discussion of thermal
noise and convection given in Section 3.0). Although the laser can be
operated over a wide range of At , as illustrated in Figures 15 and 16,
the mode shapes recorded at 1000°F using At = 50 us appeared to be quite
symmetrical, clean, and undistorted, which made it unnecessary to use another
time-delay.

The high-temperature tests (ranging from 255° up to 1050°F) were con-
ducted in a period of approximately four (4) hours of actual testing time.
Approximately 40 differential holograms were made in this period, and mode
shapes were successfully recorded on approximately two-thirds of the shots.
Various minor problems contributed to give unsuccessful holograms, such as
insufficient vibration amplitude at the high-frequencies (= 1000 cps),
occasional mis-firing of the laser (one pulse, but not two), etc.

The final hologram of this test series was made of the fundamental mode
using two single pulses of the laser, with a long time-delay (several
seconds) between exposures. The first pulse was made at time t,, and the
second pulse was made at time t, = t, + At + mT (i.e., an integral number of
cycles mT later). The result iS shown in Figure 56, which shows no contour
fringes on the plate, despite the fact that it had been vibrating between
exposures. The thermal convection noise N(t) prevented the interferogram
from forming near the heated plate (See Equation 2-6). WNote that black
interference fringes did form on the support frame (around the 8" x 10"
central opening) where the thermal convection was greatly reduced.
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Figure 44: Differential hologram of the fundamental mode (1 x 1)
at 514°F. (f = 230 cps, At = 50 usec)

Figure 45: Differential hologram of the 2 x 2 mode at 515°F.
( £ = 492 cps, At = 50 usec)
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Figure 48 - Differential Hologram of the Fundamental Mode (1 x 1) at
1046°F. (£ = 200 cps, At = 50 us)

Figure 49 - Differential Hologram of the 2 x 1 Mode at 1049°F
(f = 326 cps, At = 50 us)
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Figure 50 - Differential Hologram of a "Combination Mode" at 1053°F.
(Looks like the 1 x 2 Mode Combined with the 2 x 1 Mode).
(f = 324 cps, At = 50 us)

Figure 51 - Differential Hologram of the 1 x 2 Mode at 1056°F.
(f = 332 cps, At = 50us)
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Figure 52 - Differential Hologram of the 2 x 2 Mode at 1040°F
(f = 506 cps, At = 50 us)

Figure 53 —~ Differential Hologram of the 3 x 1 Mode at 1052°F
(f = 544 cps, At = 40 ps)
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Figure 54 - Differential Hologram of the 3 x 2 Mode at 1050 °F
(f = 692 cps, At = 50 us)

Figure 55 - Differential Hologram of the 4 x 2 Mode at 1044°F
(f = 962 cps, At = 50 us)
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Figure 56 - Double-Pulse Hologram, made with
a Long Time~Delay (~ 2 seconds)
Between Exposures. (The plate was
at 1050°F, and vibrating strongly.)
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Relative Displacements, Wy T Wy, in Quarter Wavelengths

Figure 58: Mode shape data from the interferogram of Figure 52 (2 x 2
mode, 1040°F, £ = 506 cps)
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Figure 59 - Mode Shape Data from the Interferogram of Figure 44
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Results and Discussion

The differential holograms of the heated vibrating plate are shown
in Figures 42 through 55, with the corresponding plate temperature ranging
from 255°F to 1050°F. The thermocouple recorded the temperature in the lower
right-hand quadrant of the plate, and at 1000°F the plate exhibited an
orange-reddish glow that appeared symmetric with the central axes of the
plate. The plate was cooler at the edges than in the middle, but nevertheless
the vibration modes were still very symmetric and undistorted, for the most
part. (See Figures 42, 45, 47, 49, 52 and 54). The fundamental mode
experienced some distortion (See Figures 44, 46, and 48) primarily near
the point where the drive spring contacted the plate.

For a uniform simply-supported rectangular plate with uniform in-plane
loading (e.g., compression N_ or N ), the vibration modes and buckling modes
coincide (See Ref. 23). Fur%hermo¥e, the plate normally buckles in its lowest
mode (i.e., the fundamental). A non-uniform in-plane loading of the form

_ 2 Ty -
NX-N0+AN sin” & (4-1)

(where b is the width of the plate in the y-direction)

would be expected to influence the fundamental mode most strongly and the
higher modes less-and-less. Such a loading (eq. 4-1) might arise due to the
non~-uniform temperature of the plate. This decreased sensitivity of the
higher modes (to loadings like 4-1) may account for the relative lack of
distortion in the modes above the fundamental.

In most cases, the vibration amplitude was sufficient to produce several
fringe contours. For the 'weaker" resonances, however, only ome or two
fringe contours were recorded (e.g. Figures 49, 51 and 55). Thus, for
Figure 49, the relative displacement Wy = Wi, was just slightly greater than
a quarter—-wavelength (A/4 equals one fringe} between exposures.

Regarding the actual shape of the vibration mode, the interpretation
of the black interference fringes as contour lines gives a clear understanding
of the holograms. For example, Figures 45, 47, and 52 are readily interpreted
as the 2 x 2 mode, corresponding to the mode shape

¢52 (x,y) = sin 2%5 sin 2%X (4-2)

for the classical plate vibration problem (Ref. 23). In equation (4-2), the
axes x and y are aligned with the edges of the plate, with the side lengths
a and b, respectively. As indicated previously (Sections 2.0 and 3.0) the
phase of the vibration is not recorded by the differential hologram. Thus,
it is not apparent from the interferograms as to which contours enclose the
(positive) "hills'" of the mode, as opposed to the (negative) "valleys".
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The fringe contours are each spaced a distance A/2 apart, corresponding
to a difference of one fringe order im the equation

(2n - D)X

A = Wy =Wy = (2-15)

discussed previously in Section 2.0. By placing a ruler across the photograph
(e.g. Figure 45) and recording the location of each fringe, the mode shape can
be determined using equation (2-15). That is, each fringe location (x., say)
has a corresponding fringe order (n.) which corresponds to a relative
displacement (Aw.) at that locationr This procedure was used to obtain the
mode shapes presénted in Figures 57 through 59. For comparison purposes,

the sine waves (e.g., equation 4-2) appropriate to classical plate theory are
shown as solid lines in the figures.

The undistorted behavior of the 2 x 2 mode is readily apparent in Figure
57, just as the distortion of the fundamental mode is clear from Figure 59.
These results clearly demonstrate the capability of pulsed differential
holography to record vibration modes at 1000°F. Similar experiments were
conducted to demonstrate that vibration modes can also be measured at higher
temperatures (e.g., 2000°F). These results are presented in Section 5.0 which
follows.
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5.0 TESTS AT 2000°F
Introduction

With the successful completion of the vibration tests at 1000°F, the
theory of holographically recording mode shapes in the presence of turbulent
convection currents had been demonstrated to work. At this point, the
decision was made to extend the tests to higher temperatures (e.g., 2000 -
2200°F) which are thought to be representative for the NASA/Space Shuttle
TPS panels. Of particular interest were such practical considerations as
making measurements on the heated side of the plate, at small grazing angles,
and with a view cluttered by heat lamps and other fixtures. Other problems,
such as operating a vibration transducer at 2000°F for an extended period of
time, and making holograms in the presence of intense white light from the
quartz lamps, were successfully overcome. The experimental set-up, test
procedure, and resulting mode shapes at 2000°F are discussed in the following
paragraphs.

Plate Specimen and Support Structure

A problem encountered in the previous tests (Section 4.0) was that
of achieving sufficiently high temperature. The individual reflector units
(which hold eight quartz lamps) are rated to operate at a maximum input of
approximately 8 kilowatts. For comparison purposes, an area 8" by 10"
(the original plate planform) radiates approximately 5 kilowatts if heated
to a temperature of 1500°F. Thus, the question of putting enough energy into
the plate to raise its temperature to 2000°F became a design problem. This
problem was solved by

o Reducing the plate area from 8" x 10" to 4" x 8"

o Designing the plate supports to carry electrical current, producing
resistance heating of the plate (12R)

o Using the quartz lamps in addition to the resistance heating

A schematic diagram of the plate and its support structure are shown
in Figure 60. TFigure 61 is a photograph of the actual hardware. The plate
specimen was stainless steel (302 or 304), four inches wide, and cut to a
length of 12 inches. Stainless steel was selected as the plate material
because of its desirable electrical resistivity and high melting temperature.
An energy balance (between electrical input and thermal radiation out) was
used to select the plate thickness. Initial tests were conducted using a
thickness h = .047 inches.

One end of the plate specimen was clamped to the support frame, and
three stainless steel springs were used to apply a slight tension load at
the other end of the plate. * An intermediate support was placed between the
clamped end and the springs, giving the test section an 8-inch span (See
Figures 60 and 61). The electrical connections for resistance heating were

The tension springs were used to take up the thermal expansion and prevent
buckling of the plate.

100



made at the clamped end and the intermediate support; thus, just the 8-inch
span was electrically heated. The electrical current was brought in through
large, bolted connectors, and heavy support clamps (like buss—bars) were
used to obtain fairly uniform current density in the plate. (The connectors
and clamps are visible in Figure 61.)

With this arrangement, the combination of resistance heating and quartz
lamps were sufficient to heat the plate to 2000°F. The temperature was
recorded using a chrome—-alumel thermocouple, mounted on the cold side of the
plate. TFrom a structural standpoint, the eight-inch heated span of the plate
acted much like a wide beam (i.e., 4" wide, 8" long, and .047" thick). The
ends of the beam were essentially "clamped" (i.e., fixed at x = 0, and x = 8'")
as opposed to being ' simply-supported'. The other two edges of the test
specimen were stress—free.

Excitation and Detection of Resonance

The electrodynamic shaker was again used to vibrate the plate (as in
Section 4.0) using the tubular sting and stainless-steel compression spring
arrangement. The actual set-up is shown in Figure 62 for the 2000°F test.

The Bently-Nevada inductance-type displacement transducer was used to detect
resonance, as previously discussed in Section 3.0. One test series was con-
ducted without cooling the transducer, and it eventually failed to operate.

The transducer was replaced and provided with water cooling. The copper tubing
and the cooling coils are visible around the transducer in Figure €3. The
critical areas of the excitation and detection problem were (1) the stainless
steel drive spring and (2) the inductance vibration transducer. Both operated
successfully for plate temperatures as high as 2000°F.

"Cluttered View", and Small Grazing Angles

A single reflector unit (containing a %ank of eight quartz heat lamps)
was positioned near the front side of the plate. (A schematic diagram is
shown in Figure 64, and the actual set-up in Figure 65). The close proximity
of the heat lamps to the surface of the plate allowed only small angles for
illuminating and viewing the plate (cf. Figure 12, Section 2.0). This
experimental arrangement, with small grazing angles (¢ and e_) and heat
lamps mounted close to the plate, was meant to demonsttlate some of the practical
problems which are likely to occur in applying holography to actual NASA
vibration tests of heated Space Shuttle panels. Figures 64 and 65 illustrate
the practical problems of a 'cluttered view", and small grazing angles.

Experimental Set-Up

A schematic diagram of the experimental set-up is shown in Figure
66. An overall view of the actual test set—up and hardware is given in
Figure 67. The laser and optics (corresponding to the schematic) are
shown in Figure 68. Additional details of the test fixtures and geometry
are given in Figures 60 to 65 and 69 to 72. The oscillator—amplifier

101



combination used to drive the shaker are visible in Figure 67, along
with the transducer electronics and the oscilloscope. A chrome~alumel
thermocouple was used to measure the plate temperature., The thin leads
from the thermo-couple are visible in Figure 62. The quartz heat lamps
(one reflector unit) were mounted about 1-1/2 to 2 inches from the plate
surface (see Figure 69).

The optical arrangement used to make the holograms is shown in
Figures 66 and 68. Note the use of a mechanical shutter (in front of
the hologram) and an optical band-pass filter (Wratten filter #70) shown
in Figure 66. During the tests, intense white light radiated from the
quartz lamps (cf. Figures 67 and 69). It was necessary to prevent this
light from exposing (i.e., fogging) the hologram. The shutter and optical
filter (in the object beam, coming from the vibrating plate) were used
to allow the laser light to reach the hologram while restricting the
exposure to the light from the quartz lamps. The shutter is visible in
Figures 70 and 71, along with an aluminum sheet that served as a baffle.

The light baffle was used to prevent white light (from the quartz
lamps) from reaching the back of the hologram and causing fogging.
Additional light baffles (in the form of a cardboard "tunnel") were used
along the path of the reference beam to restrict the passage of spurious
light from the heat lamps. (The cardboard baffle is shown in Figure 72.)

Timing of the Laser Pulses

Preliminary tests were run using a timing arrangement similar to
that described in Section 3.0. The mechanical shutter was set at
1/25th of a second and connected with the electronics using a "logical-
and circuit'. With this arrangement, the laser was fired when (i) the
shutter was open, and (ii) the plate velocity was a maximum. (It was
necessary for the shutter to be open during a full vibration period
with this synchronization scheme.) This timing method was used in
early tests made at room temperature.

When the heat lamps were turned on, however, the slow shutter
speed allowed the white light to fog the hologram. Thus, it became
necessary to use a faster shutter speed (1/400th of a second), which
did not allow synchronization with the plate motion. The electrical
arrangement for firing the laser with the mechanical shutter is given
in Figure 73.

The shutter was manually controlled, and when opened, it completed
a circuit which triggered the laser flash lamp. After an 850 usec time-
delay (from the flash lamp triggering) the Pockels cell Q-switch was
activated, resulting in the first laser pulse (tl). The second laser

pulse occurred 50 usec later, giving the desired time-delay At between
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Figure 60 - Schematic Diagram of Plate Specimen and Support Structure



Figure 61: Plate and support structure. (The heated
span is 8" long and 4'" wide.)
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Figure 67:

Overall view of the test set-up



Figure 68: Photograph showing arrangement of the laser
and optics
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Figure 69:

w
i
]
5
L
k%

View illustrating spacing between quartz
lamps and the plate

112



113

Relative position of shutter and vibrating plate

Figure 70:
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Figure 71:
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pulses. For a plate vibrating at 100 cps, the corresponding vibration
period is T = 10 millisec. In this case, the manual shutter would be
open for only 1/400 = 2.5 millisec, or one-fourth of the vibration
period. Since the shutter opening (2.5 ms) could fall anywhere within
the vibration cycle, we have the case of "random firing of the first
laser pulse", discussed in Section 3.0. (It should be noted that the
initial laser pulse was controlled by the mechanical shutter and occurred
at a definite time during the 1/400 sec shutter opening.)

Some Preliminary Results

Initial tests were made at room temperature, and they demonstrated
the ability of differential holography to record vibration modes using
small grazing angles and a cluttered view. The differential interferograms
of four modes (at room temperature) are shown in Figures 74 to 77. The
mode shapes are readily apparent from the interferograms, and the nodal
lines are illustrated in the diagrams (Figures 74 to 77).

Quantitative data can be obtained from the interferograms, using
Equation (3-22)

_ _ (2n + )2 _
Y2 T V1 T 2(sin €, + sin £_) (3-22)
i v
The experimental set-up was such that the viewing angle (ev) was in
the range
6.6° < g, < 9.6° (5-1)
and the illuminating angle (ei) was bounded by the same range
9.6 > €; 2 6.6° (5-2)
These angles varied (slightly) with the distance (x) along the length
of the plate, such that the sum
(sin e; + sin sv) He; te (5-3)
was very nearly constant. Thus, Equation (3-22) gives
_(2n + DA ~ (Cn + DA (5-2)

Wo — W, = =
2 1 Z(Ei + ev) 2(.14)
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where (ei + sv)'g .14 radians (e.g., 8.1°) for our test set-up. Equation

(5-4) was used to determine the quantitative mode shape data shown in

Figure 78.

Test Procedure

The test procedure used was similar to that presented in Section 3.0,
with slight modifications. In general, the individual steps in the
2000°F tests were as follows:

(€H)

(2)

3

(4)

(5)

(6)

)]

Turn on the electrical heating current to the plate (causing

IZR heating)

Turn on the quartz lamps, and continue to raise the plate
temperature

Monitor the temperature with the thermocouple, and allow
the plate to stabilize at the desired temperature

Vary the frequency and amplitude of the shaker and tune-in
a resonance of the plate. The plate response was monitored
by the displacement transducer

Load the film plate in its holder and then manually operate
the shutter, which fired the laser to make the differential
recording

Develop the hologram and tune in another resonant mode; repeat
Steps 4 and 5 to record another mode

If the developed hologram did not contain an adequate
number of fringes, the mode in question can be re-tuned
and another attempt made to record it

This procedure was used to record resonant modes of the vibrating
plate at temperatures ranging from 1600°F to 2025°F. The results are
presented in the following paragraphs.
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Results and Discussion

Initial high-temperature tests were conducted by heating the plate
to 1950°F and recording modes using the procedure just described. A
typical interferogram is shown in Figure 79, which is the first torsion
mode at 1950°F (cf. Figure 75, the corresponding mode at room temperature).

Figure 79 contains several black vertical lines which resulted from
surface oxidation of the plate. In addition, the interference fringes
are of low-contrast, and the hologram was fogged slightly (due to the
spurious white light). The Wratten Filter (6943A) was added to the test
set-up (see Figure 66) for the subsequent experiments, to inhibit fogging
of the holograms.

At this point, the .047" plate specimen was replaced by a thinner
sheet (.031") in an attempt to increase the resistive heating and reach
higher temperatures. Tests were run using the thinner plate, and a
temperature of 1975°F was reached. Modes were recorded at this temperature,
but again the fringe contrast was somewhat weak. (This test was stopped
abruptly when the gold film boiled off the reflective heating unit and
the lamps burned out.)

The final test series was also conducted using a plate .031l" thick.
In this test sequence, the plate reached a temperature of approximately
1600°F by resistance heating alone. Several high-quality interferograms
were made at this temperature, and the various modes are shown in Figures
80-86. The results are similar in many respects to the modes recorded
at room temperature and presented previously in Figures 74 to 77. The
quartz lamps were then turned on and a maximum temperature of 20253°F was
achieved. Mode shapes were successfully recorded at this temperature,
as shown in Figures 87 and 88.

These differential interferograms can be interpreted using Equations
(5-4) or (3-22) presented previously. An example of such data reduction
was given in Figure 78. However, the interferograms themselves provide
a good qualitative indication of the mode shape, not unlike the familiar
Chaldni sand patterns. In many cases, this qualitative information is
sufficient for the vibrations analyst, since it often can be used to
compare with computed mode shapes or nodal pattermns.
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Figure 79:

Differential hologram showing first torsion mode of
a 4" x 8" stainless steel plate at 1950°F. The

black vertical lines are due to surface oxidation.
(f = 200 cps, At = 50 usec)
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Second torsion mode at 1447°F (£ = 290 cps,
At = 50 usec)

Figure 83:

Combination mode at 1602°F (f = 135 cps,
At = 50 usec)
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Figure 86:

Combination mode at 1630°F (f = 230 cps, At

129

= 50 usec)
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Figure 87:

Fundamental mode at 2025°F (f = 60 cps,
At = 50 usec)

Figure 88:

First torsion mode at 2012°F (f = 171
At = 50 usec)
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6.0 CONCLUDING REMARKS

The primary result of this study is as follows: It demonstrated
that pulsed differential holography can be used to measure vibration
modes of heated plates (in the atmosphere) at temperatures up to 2000°F.
Since the free convection boundary layer is turbulent for these elevated
temperatures we can generalize this conclusion to state ""Pulsed differen-
tial holography allows measurements of structural deformations through
turbulent boundary layers." Based upon the holographic equations given
herein, it is possible to analyze similar situations where it is desired
to make structural deformation measurements in the presence of random,
noisy environments. One example of such calculations is the measurement
of flutter modes through a random, turbulent boundary layer.

Other results of secondary importance include the fact that the
basic equations which govern pulsed differential holography (for harmonic
vibrations involving amplitude, frequency, and the time delay At) have
been verified experimentally. Results have been presented in which the
laser was synchronized to the vibration and also for "random timing" of
the laser. Both these approaches have been analyzed mathematically
herein and demonstrated to work experimentally. These and related
results, such as the vibration sensitivity curves given herein, will be
of use to other workers who apply pulsed differential holography to
other mechanics problems.

Finally, the reader should note that the question of 'noise'", and
"noisy mechanical environments' has been considered herein and a
preliminary analysis given. TFor the experiments reported herein, there
were virtually no problems that arose due to noise, spurious vibrat.omns,
or lack of mechanical stability. Wooden tables and ordinary laboratory
benches were used to support the optics, the plate specimen, the shaker,
etc., and little or no attempt was made at vibration isolation of these
components. This represents the extent of the stability problems which
were encountered experimentally. The development of precise limitations
on noise (which are less stringent than those presented herein) will
very likely depend on future applications of pulsed laser holography in
noisy environments.
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